Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Front Nutr ; 11: 1430768, 2024.
Article in English | MEDLINE | ID: mdl-39045282

ABSTRACT

Sea buckthorn (Hippophae Fructus), as a homologous species of medicine and food, is widely used by Mongolians and Tibetans for its anti-tumor, antioxidant and liver-protecting properties. In this review, the excellent anti-tumor effect of sea buckthorn was first found through network pharmacology, and its active components such as isorhamnetin, quercetin, gallic acid and protocatechuic acid were found to have significant anti-tumor effects. The research progress and application prospect of sea buckthorn and its active components in anti-tumor types, mechanism of action, liver protection, anti-radiation and toxicology were reviewed, providing theoretical basis for the development of sea buckthorn products in the field of anti-tumor research and clinical application.

2.
Biomed Pharmacother ; 177: 117049, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945081

ABSTRACT

Ginseng, the dried root of Panax ginseng C.A. Mey., is widely used in Chinese herbal medicine. Ginsenosides, the primary active components of ginseng, exhibit diverse anticancer functions through various mechanisms, such as inhibiting tumor cell proliferation, promoting apoptosis, and suppressing cell invasion and migration. In this article, the mechanism of action of 20 ginsenoside subtypes in tumor therapy and the research progress of multifunctional nanosystems are reviewed, in order to provide reference for clinical prevention and treatment of cancer.


Subject(s)
Cell Proliferation , Drug Resistance, Neoplasm , Ginsenosides , Neoplasm Metastasis , Neoplasms , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Cell Proliferation/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Panax/chemistry , Apoptosis/drug effects
3.
Heliyon ; 10(10): e31452, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831826

ABSTRACT

Background: Polyphyllin is a class of saponins extracted from Paris polyphylla rhizomes and has been used in clinical application in China for more than 2000 years. However, the mechanism for treating gastric cancer (GC) is still unclear. This study was designed to predict the targets and mechanisms of total Polyphyllin from Paris polyphylla rhizomes for the treatment of GC. Method: Firstly, PubChem and Swiss Target Prediction databases were utilized to collect the 12 ingredients of total Polyphyllin from Paris polyphylla rhizomes and their targets. GC-related genes were obtained from the GEO database. Then the intersecting targets to all these molecules that identified using Venny. Secondly, the intersecting targets were imported into STRING platform for protein-protein interaction (PPI) network. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted in DAVID website. In addition, the GEPIA was applied to perform the expression levels, transcript levels, staging, and overall survival of hub genes. In addition, we used AutoDock Vina to evaluate binding affinity of molecular docking between key ingredients and anti-GC targets. In vitro cell experiments, we detected the cell viability of gastric cancer cells at 24, 36, and 48 h using CCK-8 assay. The G0/G1 of cell cycle and apoptosis were detected by flow cytometry. Finally, quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the level of hub genes, and Western blot was used to detect the changes of PI3K/Akt signal pathway. Results: Firstly, we identified 12 ingredients and 286 targets of total Polyphyllin. A total of 2653 GC-related differentially expressed genes (DEGs) were collected, including 1366 up-regulated genes and 1287 down-regulated genes. Moreover, 45 targets were obtained after intersection. Secondly, results of the GO enrichment suggested that these genes were closely related to cell proliferation, migration and aging. KEGG analysis suggested that Polyphyllin in GC therapy were mostly regulated by multiple pathways, including the pathways in cancer, calcium signaling pathway, Rap1 signaling pathway, phospholipase D signaling pathway, etc. In addition, GEPIA results exhibited that PDGFRB, KIT, FGF1, GLI1, F2R, and HIF1A were associated with GC progression, stage, and survival. Besides, the molecular docking results further confirmed that the binding energy of Polyphyllin Ⅲ with HIF1A was minimal. In vitro cell experiments, Polyphyllin Ⅲ inhibited the cell viability of gastric cancer cells, blocked the cell cycle G0/G1 phase, and induced cell apoptosis. In addition, Polyphyllin Ⅲ down-regulated the mRNA levels of PDGFRB, KIT, FGF1, GLI1, F2R, and HIF1A, and regulated the PI3K/Akt signal pathway. Conclusions: The results revealed that total Polyphyllin treated GC through multiple targets, multiple channels, and multiple pathways. In addition, Polyphyllin Ⅲ played an anti-gastric cancer role by inhibiting the proliferation of gastric cancer.

4.
Plant Dis ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902879

ABSTRACT

Caladium (Caladium × hortulanum) is an ornamental plant popular for its variable and colorful foliage. In 2020, plants showing leaf spots and blight, typical of anthracnose, were found in a field trial at the University of Florida's Gulf Coast Research and Education Center (UF/GCREC) in Wimauma, FL, USA. Leaf samples consistently yielded a Colletotrichum-like species with curved conidia and abundant setae production in the acervuli. The internal transcribed spacer (ITS), partial sequences of the glyceraldehyde-3-phosphate dehydrogenase gene (gapdh), actin gene (act), chitin synthase 1 gene (chs-1), beta-tubulin gene (tub2), and histone3 gene (his3) were amplified and sequenced. Blastn searches in the NCBI GenBank database revealed similarities to species of the Colletotrichum truncatum species complex. Phylogenetic analyses using multi-locus sequence data supports a distinct species within this complex, with the closest related species being C. curcumae. Based on morphological and phylogenetic analyses, a new species of Colletotrichum, named C. caladii, is reported. Pathogenicity assays and subsequent isolation confirmed that this species was the causal agent of the disease.

5.
Article in English | MEDLINE | ID: mdl-38864908

ABSTRACT

The study aimed to utilize network pharmacology combined with cell experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA and HPA databases. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, transwell invasion, transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.

6.
Medicine (Baltimore) ; 103(25): e38531, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905394

ABSTRACT

The aim of this study was to investigate the key targets and molecular mechanisms of the drug pair Astragalus membranaceus and Poria cocos (HFDP) in the treatment of immunity. We utilized network pharmacology, molecular docking, and immune infiltration techniques in conjunction with data from the GEO database. Previous clinical studies have shown that HFDP has a positive impact on immune function. We first identified the active ingredients and targets of HFDP from the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database, respectively. Next, we retrieved the differentially expressed genes (DEGs) related to immunity from the GEO databases. The intersection targets of the drugs and diseases were then analyzed using the STRING database for protein-protein interaction (PPI) network analysis, and the core targets were determined through topological analysis. Finally, the intersection genes were further analyzed using the DAVID database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. Subsequently, by analyzing the expression and prognostic survival of 12 core targets, 5 core target genes were identified, and molecular docking between the hub genes and immunity was performed. Finally, we used the CIBERSORT algorithm to analyze the immune infiltration of immunity genes In this study, 34 effective ingredients of HFDP, 530 target genes, and 568 differential genes were identified. GO and KEGG analysis showed that the intersection genes of HFDP targets and immunity-related genes were mainly related to complement and coagulation cascades, cytokine receptors, and retinol metabolism pathways. The molecular docking results showed that the 5 core genes had obvious affinity for the active ingredients of HFDP, which could be used as potential targets to improve the immunity of HFDP. Our findings suggest that HFDP is characterized by "multiple components, multiple targets, and multiple pathways" in regulating immunity. It may play an essential role in regulating immunity by regulating the expression and polymorphism of the central target genes ESR1, JUN, CYP3A4, CYP2C9, and SERPINE1.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Protein Interaction Maps/genetics , Humans , Wolfiporia/chemistry , Medicine, Chinese Traditional
7.
Front Pharmacol ; 15: 1384189, 2024.
Article in English | MEDLINE | ID: mdl-38915462

ABSTRACT

Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.

8.
Front Chem ; 12: 1397549, 2024.
Article in English | MEDLINE | ID: mdl-38708031

ABSTRACT

Leptadenia hastata (Pers.) Decne is a commonly used food source and prescribed as a traditional African medicine for treatment of various diseases, such as diabetes, skin disorders, wounds, and ulcers. However, quality control has become a bottleneck restricting the therapeutic development and utilization of this plant. In this study, a reliable method for qualitative and quantitative determination of components in Leptadenia hastata was established. The components of L. hastata were profiled using ultra-high performance liquid chromatography coupled with quadruple time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS). Subsequently, an ultra-high performance tandem diode array detector (UHPLC-DAD)-based method was used for simultaneous quantitative analysis of five major constituents in six batches of L. hastata samples. As a result, 35 compounds were tentatively identified. The quantities of the five constituents (vicenin-Ⅱ, orientin, schaftoside, chrysin 6-C-arabinoside 8-C-glucoside, chrysin 6-C-glucoside 8-C-arabinoside) were determined as 124.8-156.9 µg/g, 170.5-216.0 µg/g, 61.31-93.73 µg/g, 85.13-119.3 µg/g and 99.82-129.4 µg/g, respectively. This method offers a successful strategy for precise and effective evaluation of the constituents of L. hastata, providing a robust foundation for holistic quality assessment of medicinal plants.

9.
J Chromatogr A ; 1728: 465010, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38821033

ABSTRACT

Fufang Yinhua Jiedu granules (FYJG) is a Traditional Chinese Medicine (TCM) compound formulae preparation comprising ten herbal drugs, which has been widely used for the treatment of influenza with wind-heat type and upper respiratory tract infections. However, the phytochemical constituents of FYJG have rarely been reported, and its constituent composition still needs to be elucidated. The complexity of the natural ingredients of TCMs and the diversity of preparations are the major obstacles to fully characterizing their constituents. In this study, an innovative and intelligent analysis strategy was built to comprehensively characterize the constituents of FYJG and assign source attribution to all components. Firstly, a simple and highly efficient ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MSE) method was established to analyze the FYJG and ten single herbs. High-accuracy MS/MS data were acquired under two collision energies using high-definition MSE in the negative and positive modes. Secondly, a multistage intelligent data annotation strategy was developed and used to rapidly screen out and identify the compounds of FYJG, which was integrated with various online software and data processing platforms. The in-house chemical library of 2949 compounds was created and operated in the UNIFI software to enable automatic peak annotation of the MSE data. Then, the acquired MS data were processed by MS-DIAL, and a feature-based molecular networking (FBMN) was constructed on the Global Natural Product Social Molecular Networking (GNPS) to infer potential compositions of FYJG by rapidly classifying and visualizing. It was simultaneously using the MZmine software to recognize the source attribution of ingredients. On this basis, the unique chemical categories and characteristics of herbaceous plant species are utilized further to verify the accuracy of the source attribution of multi-components. This comprehensive analysis successfully identified or tentatively characterized 279 compounds in FYJG, including flavonoids, phenolic acids, coumarins, saponins, alkaloids, lignans, and phenylethanoids. Notably, twelve indole alkaloids and four organic acids from Isatidis Folium were characterized in this formula for the first time. This study demonstrates a potential superiority to identify compounds in complex TCM formulas using high-definition MSE and computer software-assisted structural analysis tools, which can obtain high-quality MS/MS spectra, effectively distinguish isomers, and improve the coverage of trace components. This study elucidates the various components and sources of FYJG and provides a theoretical basis for its further clinical development and application.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Medicine, Chinese Traditional
10.
World J Gastrointest Oncol ; 16(5): 1965-1994, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764819

ABSTRACT

BACKGROUND: Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM: To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS: Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS: Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION: YGS has the effect of anti-gastric cancer and immune regulation.

11.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675663

ABSTRACT

PURPOSE: To investigate and systematically describe the mechanism of action of Prunella vulgaris (P. vulgaris) against digestive system tumors and related toxicity reduction. METHODS: This study briefly describes the history of medicinal food and the pharmacological effects of P. vulgaris, focusing on the review of the anti-digestive tumor effects of the active ingredients of P. vulgaris and the mechanism of its toxicity reduction. RESULTS: The active ingredients of P. vulgaris may exert anti-tumor effects by inducing the apoptosis of cancer cells, inhibiting angiogenesis, inhibiting the migration and invasion of tumor cells, and inhibiting autophagy. In addition, P. vulgaris active ingredients inhibit the release of inflammatory factors and macrophages and increase the level of indicators of oxidative stress through the modulation of target genes in the pathway to achieve the effect of toxicity reduction. CONCLUSION: The active ingredients in the medicine food homology plant P. vulgaris not only treat digestive system tumors through different mechanisms but also reduce the toxic effects. P. vulgaris is worthy of being explored more deeply.


Subject(s)
Prunella , Prunella/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Autophagy/drug effects , Animals , Oxidative Stress/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
12.
World J Diabetes ; 15(3): 530-551, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38591077

ABSTRACT

BACKGROUND: Diabetic kidney disease (DKD) is one of the serious complications of diabetes mellitus, and the existing treatments cannot meet the needs of today's patients. Traditional Chinese medicine has been validated for its efficacy in DKD after many years of clinical application. However, the specific mechanism by which it works is still unclear. Elucidating the molecular mechanism of the Nardostachyos Radix et Rhizoma-rhubarb drug pair (NRDP) for the treatment of DKD will provide a new way of thinking for the research and development of new drugs. AIM: To investigate the mechanism of the NRDP in DKD by network pharmacology combined with molecular docking, and then verify the initial findings by in vitro experiments. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen active ingredient targets of NRDP. Targets for DKD were obtained based on the Genecards, OMIM, and TTD databases. The VENNY 2.1 database was used to obtain DKD and NRDP intersection targets and their Venn diagram, and Cytoscape 3.9.0 was used to build a "drug-component-target-disease" network. The String database was used to construct protein interaction networks. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology analysis were performed based on the DAVID database. After selecting the targets and the active ingredients, Autodock software was used to perform molecular docking. In experimental validation using renal tubular epithelial cells (TCMK-1), we used the Cell Counting Kit-8 assay to detect the effect of NRDP on cell viability, with glucose solution used to mimic a hyperglycemic environment. Flow cytometry was used to detect the cell cycle progression and apoptosis. Western blot was used to detect the protein expression of STAT3, p-STAT3, BAX, BCL-2, Caspase9, and Caspase3. RESULTS: A total of 10 active ingredients and 85 targets with 111 disease-related signaling pathways were obtained for NRDP. Enrichment analysis of KEGG pathways was performed to determine advanced glycation end products (AGEs)-receptor for AGEs (RAGE) signaling as the core pathway. Molecular docking showed good binding between each active ingredient and its core targets. In vitro experiments showed that NRDP inhibited the viability of TCMK-1 cells, blocked cell cycle progression in the G0/G1 phase, and reduced apoptosis in a concentration-dependent manner. Based on the results of Western blot analysis, NRDP differentially downregulated p-STAT3, BAX, Caspase3, and Caspase9 protein levels (P < 0.01 or P < 0.05). In addition, BAX/BCL-2 and p-STAT3/STAT3 ratios were reduced, while BCL-2 and STAT3 protein expression was upregulated (P < 0.01). CONCLUSION: NRDP may upregulate BCL-2 and STAT3 protein expression, and downregulate BAX, Caspase3, and Caspase9 protein expression, thus activating the AGE-RAGE signaling pathway, inhibiting the vitality of TCMK-1 cells, reducing their apoptosis. and arresting them in the G0/G1 phase to protect them from damage by high glucose.

13.
Molecules ; 29(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611704

ABSTRACT

Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.


Subject(s)
Drugs, Chinese Herbal , Medicine , Neoplasms , Paeonia , Plant Extracts , Humans , China , Neoplasms/drug therapy
14.
J Pharm Biomed Anal ; 244: 116129, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38579408

ABSTRACT

Oligosaccharides constitute fundamental components in numerous traditional Chinese medicines (TCMs). Conventional chromatographic methods for natural product analysis are not suitable for oligosaccharides due to their large polarity and structural similarity. Herein, an ultra-high performance liquid chromatography with charged aerosol detector (UHPLC-CAD) method was developed for the profiling of oligosaccharides using 9 neutral (DP3-DP11) reference oligosaccharides. Various factors, including columns, mobile phase, elution conditions, flow rate, and column temperature were systematically examined. Optimal separation was achieved using an Amide column with gradient elution within 18 min, at 0.5 mL/min flow rate and 30°C column temperature. Moreover, an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was also optimized to provide structural information. The developed method was applied to detect oligosaccharides in several TCMs, including Morindae Officinalis Radix (MOR), Ziziphi Spinosae Semen (ZSS), Menthae Haplocalycis Herba (MHH) and Chrysanthemi Indici Flos (CIF), revealing 9 and 16 oligosaccharides being uncovered from MHH and CIF respectively for the first time. This study presents a versatile UHPLC-CAD and UHPLC-Q-TOF/MS method with the potential for advancing oligosaccharides discovery and contributing to the quality analysis of TCMs.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Oligosaccharides , Chromatography, High Pressure Liquid/methods , Oligosaccharides/analysis , Oligosaccharides/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods
15.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503700

ABSTRACT

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Flavones , Saponins , Triterpenes , Ziziphus , Drugs, Chinese Herbal/chemistry , Betulinic Acid , Saponins/chemistry , Oleic Acids , Chromatography, High Pressure Liquid , Ziziphus/chemistry , Seeds
16.
Medicine (Baltimore) ; 103(10): e36303, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457601

ABSTRACT

To investigate the mechanism of action of Banxia-Shengjiang drug pair on the inhibition of gastric cancer (GC) using network pharmacology and bioinformatics techniques. The action targets of the Banxia (Pinellia ternata (Thunb.) Makino) -Shengjiang (Zingiber officinale Roscoe) drug pair obtained from the TCMSP database were intersected with differentially expressed genes (DEGs) and GC-related genes, and the intersected genes were analyzed for pathway enrichment to identify the signaling pathways and core target genes. Subsequently, the core target genes were analyzed for clinical relevance gene mutation analysis, methylation analysis, immune infiltration analysis and immune cell analysis. Finally, by constructing the PPI network of hub genes and corresponding active ingredients, the key active ingredients of the Banxia-Shengjiang drug pair were screened for molecular docking with the hub genes. In this study, a total of 557 target genes of Banxia-Shengjiang pairs, 7754 GC-related genes and 1799 DEGs in GC were screened. Five hub genes were screened, which were PTGS2, MMP9, PPARG, MMP2, and CXCR4. The pathway enrichment analyses showed that the intersecting genes were associated with RAS/MAPK signaling pathway. In addition, the clinical correlation analysis showed that hub genes were differentially expressed in GC and was closely associated with immune infiltration and immunotherapy. The results of single nucleotide variation (SNV) and copy number variation (CNV) indicated that mutations in the hub genes were associated with the survival of gastric cancer patients. Finally, the PPI network and molecular docking results showed that PTGS2 and MMP9 were potentially important targets for the inhibition of GC by Banxia-Shengjiang drug pair, while cavidine was an important active ingredient for the inhibition of GC by Banxia-Shengjiang drug pair. Banxia-Shengjiang drug pair may regulate the immune function and inhibit GC by modulating the expression of core target genes such as RAS/MAPK signaling pathway, PTGS2 and MMP9.


Subject(s)
Matrix Metalloproteinase 9 , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Cyclooxygenase 2 , DNA Copy Number Variations , Molecular Docking Simulation
17.
Aging (Albany NY) ; 16(4): 3363-3385, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38349866

ABSTRACT

BACKGROUND: Based on bioinformatics research of NUDT21 in pan-cancer, we aimed to clarify the mechanism of NUDT21 in HHNC by experiment. METHODS: The correlation between differential expression of NUDT21 in pan-cancer and survival prognosis, genomic instability, tumor stemness, DNA repair, RNA methylation and with immune microenvironment were analyzed by the application of different pan-cancer analysis web databases. In addition, immunohistochemistry staining and genetic detection of NUDT21 in HHNCC tumor tissues by immunohistochemistry and qRT-PCR. Then, through in vitro cell experiments, NUDT21 was knocked down by lentivirus to detect the proliferation, cycle, apoptosis of FaDu and CNE-2Z cells, and finally by PathScan intracellular signaling array reagent to detect the apoptotic protein content. RESULTS: Based on the pan-cancer analysis, we found that elevated expression of NUDT21 in most cancers was significantly correlated with TMB, MSI, neoantigens and chromosomal ploidy, and in epigenetics, elevated NUDT21 expression was strongly associated with genomic stability, mismatch repair genes, tumor stemness, and RNA methylation. Based on immunosuppressive score, we found that NUDT21 plays an essential role in the immunosuppressive environment by suppressing immune checkpointing effect in most cancers. In addition, using HHNSCC as a study target, PCR and pathological detection of NUDT21 in tumor tissues was significantly increased than that in paracancerous normal tissues. In vitro cellular assays, silencing NUDT21 inhibited proliferation and promoted apoptosis in FaDu and CNE-2Z cells, and blocked the cell cycle in the G2/M phase. Therefore, the experiments confirmed that NUDT21 promotes the proliferation of FaDu by suppressing the expression of apoptotic.


Subject(s)
Apoptosis , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Cell Division , Apoptosis/genetics , Cell Cycle/genetics , Genomic Instability , Tumor Microenvironment
18.
Heliyon ; 10(2): e24776, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312712

ABSTRACT

Background: Explore the molecular mechanism of Dahuang-Shengjiang-Banxia Decoction (DSBD) in the treatment of diabetic kidney disease (DKD), using network pharmacology and molecular docking technology. Method: The effective ingredients and targets of the DSBD were taken from the TCMSP database, while the disease targets were obtained via GeneCards, OMIM, DrugBank, TTD, and DisGeNET. Cytoscape 3.9.1 was used to create a drug-ingredient-target network diagram. STRING databases are also used to analyze the Protein-Protein Interaction (PPI) network of intersecting targets. The core targets was obtained by the intersection of the differential genes screened from the intersection target and GEO, and the core targets was enriched by Gene ontology (GO), Kyoto gene and genome (KEGG), and Gene Set Enrichment Analysis (GSEA). CIBERSORTx was used for immunoinfiltration analysis, and then the core targets was analyzed by Nephroseq V5 and KIT for clinical correlation analysis and single-cell sequencing. Lastly, AutoDock Vina was used for molecular docking of both the core targets and the top active elements. Results: A total of 177 DSBD and 2906 DKD targets were screened. Six core targets were identified by screening, which were IL1B, MMP9, EGF, VEGFA, HIF1A, and PTGS2. The top 6 active ingredients are 6-gingerol, baicalin, oleic acid, ß-sitosterol, linolenic acid, and aloe emodin. The core targets has good docking activity with the active ingredient. Conclusion: DSBD may exert its therapeutic effect on DKD through multicomponent, multipath, and multi-target analyses. It is possible that VEGFA is a key target in therapy, and that the VEGF/PI3K/AKT signaling pathway plays a key role in therapy.

19.
Discov Oncol ; 15(1): 52, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416262

ABSTRACT

BACKGROUND: Gan-song Yin (GSY) is originated from the scripture "Gan-song Pills", a medical work of the Ningxia ethnic minorities, and its treatment of kidney diseases has good results. Its method of treating Renal clear cell carcinoma (KIRC) is still unknown, nevertheless. METHODS: Firstly, utilizing a network pharmacology strategy to screen GSY for active components and targets and looking up KIRC-related targets in GeneCards and GEO databases. Secondly, protein interaction networks were constructed and analyzed for GO and KEGG enrichment. Molecular docking was then performed and clinical and other correlations of the network pharmacology results were analyzed using bioinformatic analysis methods. Finally, we performed in vitro cellular experiments with 786-O cells and ACHN cells to validate the results of network pharmacology and bioinformatic analysis. RESULTS: With the help of network pharmacological analysis, six hub targets were eliminated. Bioinformatics study revealed that the hub targets has clinically significant clinical guiding importance. The results showed that GSY inhibited the proliferation of 786-O cells and ACHN cells, induced cell apoptosis, blocked cell cycle, and reduced cell colony formation ability. qRT-PCR results showed that GSY promoted the expression of ALB and CASP3 genes, and inhibited the expression of EGFR, JUN, MYC and VEGFA genes. Western blot results showed that GSY could promote the expression of ALB and CASP3 protein, and inhibit the expression of EGFR, JUN, MYC and VEGFA protein. CONCLUSIONS: Network pharmacology and bioinformatics analysis showed that GSY could act on multiple targets through a variety of components to achieve the effect of treating KIRC. In this study, we confirmed that GSY inhibits KIRC by regulating the expression of core targets through in vitro cellular experiments, thus providing a reference for subsequent related studies.

20.
BMC Public Health ; 24(1): 65, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166920

ABSTRACT

BACKGROUND AND AIMS: Tobacco use has posed a tremendous public health problem for China. The Chinese government has taken great efforts to curb the tobacco epidemic. However, the existing smoking cessation services available in China are underused and have some limitations. Our research team intends to develop a smartphone smoking cessation application (SSC APP) and integrate it with the existing smoking cessation services. This study aims to assess the efficacy of the SSC APP developed by our research team through a randomized controlled trial (RCT). METHODS: Current smokers who are motivated to quit within 1 month (n = 1000) will be recruited both online and offline, and all potential participants will register and complete the prescreening assessment online. Participants will be randomly assigned to either the intervention group (receiving the SSC APP and a self-help smoking cessation manual) or the control group (receiving a self-help smoking cessation manual only) using a block randomization method. This study will be a two-arm, single-blind, parallel-group RCT. Participants will be followed up after enrollment through online questionnaires or by phone call. The primary outcome is self-reported 6-month continuous abstinence. The main secondary outcomes include self-reported 7-day point-prevalence abstinence at each follow-up; self-reported 3-month continuous abstinence; reduction in the number of cigarettes smoked per day; and the number of recent quit attempts. DISCUSSION: If this SSC APP proves to be effective, it could be integrated with the existing smoking cessation services and further facilitate smoking cessation at the population level in China. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2200062097, Registered July 22, 2022.


Subject(s)
Mobile Applications , Smoking Cessation , Humans , Smoking Cessation/methods , Smokers , Health Behavior , Behavior Therapy , Randomized Controlled Trials as Topic , Tobacco Products
SELECTION OF CITATIONS
SEARCH DETAIL