Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
BMC Biotechnol ; 24(1): 42, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898480

ABSTRACT

BACKGROUND: γ-Hexachlorocyclohexane (γ-HCH), an organochlorine insecticide of anthropogenic origin, is a persistent organic pollutant (POP) that causes environmental pollution concerns worldwide. Although many γ-HCH-degrading bacterial strains are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the low survival rate of the exogenous bacteria. Another strategy for the bioremediation of γ-HCH involves the use of transgenic plants expressing bacterial enzyme for γ-HCH degradation through phytoremediation. RESULTS: We generated transgenic Arabidopsis thaliana expressing γ-HCH dehydrochlroninase LinA from bacterium Sphingobium japonicum strain UT26. Among the transgenic Arabidopsis T2 lines, we obtained one line (A5) that expressed and accumulated LinA well. The A5-derived T3 plants showed higher tolerance to γ-HCH than the non-transformant control plants, indicating that γ-HCH is toxic for Arabidopsis thaliana and that this effect is relieved by LinA expression. The crude extract of the A5 plants showed γ-HCH degradation activity, and metabolites of γ-HCH produced by the LinA reaction were detected in the assay solution, indicating that the A5 plants accumulated the active LinA protein. In some A5 lines, the whole plant absorbed and degraded more than 99% of γ-HCH (10 ppm) in the liquid medium within 36 h. CONCLUSION: The transgenic Arabidopsis expressing active LinA absorbed and degraded γ-HCH in the liquid medium, indicating the high potential of LinA-expressing transgenic plants for the phytoremediation of environmental γ-HCH. This study marks a crucial step toward the practical use of transgenic plants for the phytoremediation of POPs.


Subject(s)
Arabidopsis , Biodegradation, Environmental , Hexachlorocyclohexane , Plants, Genetically Modified , Sphingomonadaceae , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Hexachlorocyclohexane/metabolism , Sphingomonadaceae/genetics , Sphingomonadaceae/metabolism , Sphingomonadaceae/enzymology , Soil Pollutants/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lyases/genetics , Lyases/metabolism
2.
Tree Physiol ; 44(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38145493

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease system is a versatile and essential biotechnological tool in the life sciences that allows efficient genome editing. When generating gene-edited trees, T0-generation plants are often used for subsequent analysis because of the time that is required to obtain the desired mutants via crossing. However, T0-generation plants exhibit various unexpected mutations, which emphasizes the need to identify mutants with expected mutation patterns. The two critical checkpoints in this process are to confirm the expected mutation patterns in both alleles and to exclude somatic chimeric plants. In this study, we generated gene-edited Cryptomeria japonica plants and established a method to determine chimerism and mutation patterns using fragment analysis and Oxford Nanopore Technologies (ONT)-based amplicon sequencing. In the first screening, fragment analysis, i.e., indel detection via amplicon analysis, was used to predict indel mutation patterns in both alleles and to discriminate somatic chimeric plants in 188 candidate mutants. In the second screening, we precisely determined the mutation patterns and chimerism in the mutants using ONT-based amplicon sequencing, where confirmation of both alleles can be achieved using allele-specific markers flanking the single guide RNA target site. In the present study, a bioinformatic analysis procedure was developed and provided for the rapid and accurate determination of DNA mutation patterns using ONT-based amplicon sequencing. As ONT amplicon sequencing has a low running cost compared with other long-read analysis methods, such as PacBio, it is a powerful tool in plant genetics and biotechnology to select gene-edited plants with expected indel patterns in the T0-generation.


Subject(s)
Gene Editing , Nanopores , Gene Editing/methods , CRISPR-Cas Systems , Trees/genetics , RNA, Guide, CRISPR-Cas Systems , Plants
3.
Sci Rep ; 13(1): 11779, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479866

ABSTRACT

Sugi (Cryptomeria japonica D. Don) is an economically important coniferous tree in Japan. However, abundant sugi pollen grains are dispersed and transported by the wind each spring and cause a severe pollen allergy syndrome (Japanese cedar pollinosis). The use of pollen-free sugi that cannot produce pollen has been thought as a countermeasure to Japanese cedar pollinosis. The sugi CjACOS5 gene is an ortholog of Arabidopsis ACOS5 and rice OsACOS12, which encode an acyl-CoA synthetase that is involved in the synthesis of sporopollenin in pollen walls. To generate pollen-free sugi, we mutated CjACOS5 using the CRISPR/Cas9 system. As a result of sugi transformation mediated by Agrobacterium tumefaciens harboring the CjACOS5-targeted CRISPR/Cas9 vector, 1 bp-deleted homo biallelic mutant lines were obtained. Chimeric mutant lines harboring both mutant and wild-type CjACOS5 genes were also generated. The homo biallelic mutant lines had no-pollen in male strobili, whereas chimeric mutant lines had male strobili with or without pollen grains. Our results suggest that CjACOS5 is essential for the production of pollen in sugi and that its disruption is useful for the generation of pollen-free sugi. In addition to conventional transgenic technology, genome editing technology, including CRISPR/Cas9, can confer new traits on sugi.


Subject(s)
Arabidopsis , Cryptomeria , Rhinitis, Allergic, Seasonal , Humans , Rhinitis, Allergic, Seasonal/genetics , Trees , Cryptomeria/genetics , CRISPR-Cas Systems , Pollen/genetics
4.
Sci Rep ; 11(1): 16186, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376731

ABSTRACT

Cryptomeria japonica (Japanese cedar or sugi) is one of the most important coniferous tree species in Japan and breeding programs for this species have been launched since 1950s. Genome editing technology can be used to shorten the breeding period. In this study, we performed targeted mutagenesis using the CRISPR/Cas9 system in C. japonica. First, the CRISPR/Cas9 system was tested using green fluorescent protein (GFP)-expressing transgenic embryogenic tissue lines. Knock-out efficiency of GFP ranged from 3.1 to 41.4% depending on U6 promoters and target sequences. The GFP knock-out region was mottled in many lines, indicating genome editing in individual cells. However, in 101 of 102 mutated individuals (> 99%) from 6 GFP knock-out lines, embryos had a single mutation pattern. Next, we knocked out the endogenous C. japonica magnesium chelatase subunit I (CjChlI) gene using two guide RNA targets. Green, pale green, and albino phenotypes were obtained in the gene-edited cell lines. Sequence analysis revealed random deletions, insertions, and replacements in the target region. Thus, targeted mutagenesis using the CRISPR/Cas9 system can be used to modify the C. japonica genome.


Subject(s)
CRISPR-Cas Systems , Cryptomeria/genetics , Gene Editing , Lyases/antagonists & inhibitors , Mutagenesis , Mutation , Plants, Genetically Modified/genetics , Cryptomeria/growth & development , Genetic Vectors , Genome, Plant , Japan , Lyases/genetics , Plants, Genetically Modified/growth & development
5.
Biosci Biotechnol Biochem ; 85(6): 1405-1414, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33791772

ABSTRACT

Polyhistidine peptides (PHPs), sequences comprising only histidine residues (>His8), are effective cell-penetrating peptides for plant cells. Using PHP-fusion proteins, we aimed to deliver proteins into cultured plant cells from Nicotiana tabacum, Oryza sativa, and Cryptomeria japonica. Co-cultivation of cultured cells with fusion proteins combining maltose-binding protein (MBP), red fluorescent protein (RFP), and various PHPs (MBP-RFP-His8-His20) in one polypeptide showed the cellular uptake of fusion proteins in all plant cell lines. Maximum intracellular fluorescence was shown in MBP-RFP-His20. Further, adenylate cyclase (CyaA), a synthase of cyclic adenosine monophosphate (cAMP) activated by cytosolic calmodulin, was used as a reporter for protein delivery in living cells. A fusion protein combining MBP, RFP, CyaA, and His20 (MBP-RFP-CyaA-His20) was delivered into plant cells and increased intracellular fluorescence and cAMP production in all cell lines. The present study demonstrates that PHPs are effective carriers of proteins into the intracellular space of various cultured plant cells.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/metabolism , Histidine/chemistry , Peptides/chemistry , Peptides/metabolism , Plant Cells/metabolism , Recombinant Fusion Proteins/chemistry , Biological Transport , Cell Line , Cell Membrane/metabolism , Protein Transport , Recombinant Fusion Proteins/metabolism
6.
Plant Biotechnol (Tokyo) ; 37(2): 141-146, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32821220

ABSTRACT

Cucumber (Cucumis sativus L.) and Cucurbita species (squashes, pumpkins, and gourds), belonging to the Cucurbitaceae family, are among the major vegetable crops in the world. Transgenic approaches could contribute to the accumulation of new knowledge of these species and to the development of elite cultivars. Despite this, research reports using transformants of these species are very limited so far. One of the reasons for this may be that although there are effective transformation methods, these methods are not well known among researchers. In the present review, we describe efficient protocols for the transformation of cucumber and squash plants and mention possible pitfalls in and advice for following these protocols. In addition, we discuss the current progress of genetic transformation research using cucumbers and squash, including genome editing.

7.
Plant Biotechnol (Tokyo) ; 37(2): 147-156, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32821221

ABSTRACT

Sugi (Cryptomeria japonica D. Don) is the most important afforestation coniferous tree in Japan. Coniferous trees normally have a long juvenile period and require a long cultivation time for breeding. Through a traditional breeding project that began in the 1950s, first generation plus trees with excellent traits were selected primarily from artificial forests and used as seedlings. Recently, the second generation plus trees obtained by crossing between plus trees have been selected. In light of this situation, the improvement of Sugi by a transgenic approach is effective in terms of shortening the breeding period compared with conventional crossing-dependent approaches. There are three key points to an efficient Agrobacterium-mediated transformation system: (1) establishment of explants with high regeneration ability, (2) optimal co-cultivation conditions for explants and Agrobacterium, and (3) efficient elimination of Agrobacterium. Here we describe a protocol for Agrobacterium-mediated transformation of Sugi that meets the above criteria using embryogenic tissues as explants isolated from immature seeds obtained by crossing.

8.
Plant Biotechnol (Tokyo) ; 37(2): 239-245, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32821232

ABSTRACT

Cryptomeria japonica D. Don (common name is Sugi or Japanese cedar) is the most important forestation tree species in Japan, and 2nd generation plus trees with superior traits have been selected by breeding projects. Biotechnological approaches such as genetic transformation and genome editing are expected to accelerate to add useful traits (e.g., no-pollen traits) to superior trees in short time. To develop a platform for genetic transformation and genome editing of C. japonica superior trees, this study investigated the embryogenic potential of 2nd generation plus trees and obtained good cell lines with high embryogenic potential, which could be useful material for adding new and useful traits to superior trees by genetic transformation. However, the maintenance of embryogenic cell lines is laborious, and prolonged subculture leads to a loss of embryogenesis potential. Therefore, cell lines need to be cryopreserved for long without subculture. Therefore, in this study we made a simple cryopreservation protocol suitable for most C. japonica cell lines. We showed that cryopreserved cells using this protocol formed somatic embryos, which were then converted to plantlets. Transgenic cells produced from cryopreserved cells expressed transgene, gfp. These results indicated that our cryopreservation protocol can be used for prolonged storage of genetic transformation target materials in C. japonica.

9.
Breed Sci ; 68(2): 248-257, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29875609

ABSTRACT

Genomic selection is attracting attention in the field of crop breeding. To apply genomic selection effectively for autogamous (self-pollinating) crops, an efficient outcross system is desired. Since dominant male sterility is a powerful tool for easy and successive outcross of autogamous crops, we developed transgenic dominant male sterile rice (Oryza sativa L.) using the barnase gene that is expressed by the tapetum-specific promoter BoA9. Barnase-induced male sterile rice No. 10 (BMS10) was selected for its stable male sterility and normal growth characteristics. The BMS10 flowering habits, including heading date, flowering date, and daily flowering time of BMS10 tended to be delayed compared to wild type. When BMS10 and wild type were placed side-by-side and crossed under an open-pollinating condition, the seed-setting rate was <1.5%. When the clipping method was used to avoid the influence of late flowering habits, the seed-setting rate of BMS10 increased to a maximum of 86.4%. Although flowering synchronicity should be improved to increase the seed-setting rate, our results showed that this system can produce stable transgenic male sterility with normal female fertility in rice. The transgenic male sterile rice would promote a genomic selection-based breeding system in rice.

10.
Plant Cell Rep ; 35(9): 1963-74, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27295266

ABSTRACT

KEY MESSAGE: γ-HCH was successfully degraded using LinA-expressed transgenic hairy root cultures of Cucurbita moschata . Fusing an endoplasmic reticulum-targeting signal peptide to LinA was essential for stable accumulation in the hairy roots. The pesticide γ-hexachlorocyclohexane (γ-HCH) is a persistent organic pollutant (POP) that raises public health and environmental pollution concerns worldwide. Although several isolates of γ-HCH-degrading bacteria are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the bacterial survival rate. Cucurbita species incorporate significant amounts of POPs from soils compared with other plant species. Here, we describe a novel bioremediation strategy that combines the bacterial degradation of γ-HCH and the efficient uptake of γ-HCH by Cucurbita species. We produced transgenic hairy root cultures of Cucurbita moschata that expressed recombinant bacterial linA, isolated from the bacterium Sphingobium japonicum UT26. The LinA protein was accumulated stably in the hairy root cultures by fusing an endoplasmic reticulum (ER)-targeting signal peptide to LinA. Then, we demonstrated that the cultures degraded more than 90 % of γ-HCH (1 ppm) overnight and produced the γ-HCH metabolite 1,2,4-trichlorobenzene, indicating that LinA degraded γ-HCH. These results indicate that the gene linA has high potential for phytoremediation of environmental γ-HCH.


Subject(s)
Bacterial Proteins/metabolism , Cucurbita/genetics , Cucurbita/metabolism , Hexachlorocyclohexane/metabolism , Plant Roots/growth & development , Sphingobacterium/metabolism , Tissue Culture Techniques/methods , Base Sequence , Biodegradation, Environmental , Endoplasmic Reticulum/metabolism , Plants, Genetically Modified , Protein Sorting Signals , Recombination, Genetic/genetics , Sequence Alignment , Subcellular Fractions/metabolism
11.
Biosci Biotechnol Biochem ; 80(10): 1907-16, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27310473

ABSTRACT

Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.


Subject(s)
Citrullus/enzymology , Citrullus/physiology , Droughts , Plant Roots/growth & development , ran GTP-Binding Protein/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Citrullus/genetics , Citrullus/growth & development , Dose-Response Relationship, Drug , Gene Expression Regulation, Plant , Osmotic Pressure , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Water/metabolism , ran GTP-Binding Protein/chemistry , ran GTP-Binding Protein/genetics
12.
Methods Mol Biol ; 1223: 299-310, 2015.
Article in English | MEDLINE | ID: mdl-25300850

ABSTRACT

We established improved methods for Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) and kabocha squash (Cucurbita moschata Duch). Vacuum infiltration of cotyledonary explants with Agrobacterium suspension enhanced the Agrobacterium infection efficiency in the proximal regions of explants. Wounding treatment was also essential for kabocha squash. Cocultivation on filter paper wicks suppressed necrosis of explants, keeping regeneration efficacy. Putative transgenic plants were screened by kanamycin resistance and green fluorescent protein (GFP) fluorescence. These putative transgenic plants grew normally and T1 seeds were obtained, and stable integration and transmission of the transgene in T1 generations were confirmed by Southern hybridization and PCR. The average transgenic efficiency for cucumber and kabocha squash was 11.9 ± 3.5 and 9.2 ± 2.9 %, respectively.


Subject(s)
Cucumis sativus/genetics , Cucurbita/genetics , Genetic Techniques , Plants, Genetically Modified , Agrobacterium tumefaciens/genetics , Blotting, Southern , Coculture Techniques , Cotyledon/genetics , Cucumis sativus/drug effects , Cucurbita/drug effects , Green Fluorescent Proteins/genetics , Kanamycin/pharmacology , Kanamycin Resistance/genetics , Polymerase Chain Reaction/methods , Seeds/genetics , Transformation, Bacterial
13.
Plant Biotechnol Rep ; 7(3): 267-276, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23874354

ABSTRACT

An improved method for genetic transformation of cucumber (Cucumis sativus L. cv. Shinhokusei No. 1) was developed. Vacuum infiltration of cotyledonary explants with Agrobacterium suspension enhanced the efficiency of Agrobacterium infection in the proximal regions of explants. Co-cultivation on filter paper wicks suppressed necrosis of explants, leading to increased regeneration efficiency. Putative transgenic plants were screened by kanamycin resistance and green fluorescent protein (GFP) fluorescence, and integration of the transgene into the cucumber genome was confirmed by genomic polymerase chain reaction (PCR) and Southern blotting. These transgenic plants grew normally and T1 seeds were obtained from 7 lines. Finally, stable integration and transmission of the transgene in T1 generations were confirmed by GFP fluorescence and genomic PCR. The average transgenic efficiency for producing cucumbers with our method was 11.9 ± 3.5 %, which is among the highest values reported until date using kanamycin as a selective agent.

14.
Plant Signal Behav ; 8(6): e24244, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23518587

ABSTRACT

NB-LRR-type disease resistance (R) genes have been used in traditional breeding programs for crop protection. However, functional transfer of NB-LRR-type R genes to plants in taxonomically distinct families to establish pathogen resistance has not been successful. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and B. napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Thus the successful transfer of two R genes at the family level overcomes restricted taxonomic functionality. This implies that the downstream components of R genes must be highly conserved and interfamily utilization of R genes can be a powerful strategy to combat pathogens.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Plant Immunity/genetics , Plant Proteins/physiology , Arabidopsis/immunology , Conserved Sequence
15.
PLoS One ; 8(2): e55954, 2013.
Article in English | MEDLINE | ID: mdl-23437080

ABSTRACT

A major class of disease resistance (R) genes which encode nucleotide binding and leucine rich repeat (NB-LRR) proteins have been used in traditional breeding programs for crop protection. However, it has been difficult to functionally transfer NB-LRR-type R genes in taxonomically distinct families. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and Brassica napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Importantly, RPS4/RRS1 transgenic plants show no autoimmune phenotypes, indicating that the NB-LRR proteins are tightly regulated. The successful transfer of two R genes at the family level implies that the downstream components of R genes are highly conserved. The functional interfamily transfer of R genes can be a powerful strategy for providing resistance to a broad range of pathogens.


Subject(s)
Arabidopsis Proteins/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plants/genetics , Transformation, Genetic , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Brassica/genetics , Brassica/microbiology , Colletotrichum/physiology , Cucumis sativus/genetics , Cucumis sativus/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/metabolism , Plants/microbiology , Plants, Genetically Modified , Nicotiana/genetics , Nicotiana/microbiology
16.
Plant Cell Rep ; 30(8): 1455-64, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21400224

ABSTRACT

An efficient genetic transformation method for kabocha squash (Cucurbita moschata Duch cv. Heiankogiku) was established by wounding cotyledonary node explants with aluminum borate whiskers prior to inoculation with Agrobacterium. Adventitious shoots were induced from only the proximal regions of the cotyledonary nodes and were most efficiently induced on Murashige-Skoog agar medium with 1 mg/L benzyladenine. Vortexing with 1% (w/v) aluminum borate whiskers significantly increased Agrobacterium infection efficiency in the proximal region of the explants. Transgenic plants were screened at the T(0) generation by sGFP fluorescence, genomic PCR, and Southern blot analyses. These transgenic plants grew normally and T(1) seeds were obtained. We confirmed stable integration of the transgene and its inheritance in T(1) generation plants by sGFP fluorescence and genomic PCR analyses. The average transgenic efficiency for producing kabocha squashes with our method was about 2.7%, a value sufficient for practical use.


Subject(s)
Aluminum Compounds/chemistry , Borates/chemistry , Cucurbita/genetics , Genetic Engineering/methods , Transformation, Genetic , Agrobacterium/genetics , DNA, Plant/analysis , Plants, Genetically Modified/genetics , Tissue Culture Techniques , Transgenes
17.
Plant Cell Rep ; 30(4): 529-38, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21140152

ABSTRACT

We investigated estrogen-inducible green fluorescent protein (GFP) expression patterns using an estrogen receptor fused chimeric transcription activator, XVE, in the monocotyledonous model plant rice (Oryza sativa L.). This system has been shown to be an effective chemical-inducible gene expression system in Arabidopsis and has been applied to other plants in order to investigate gene functions or produce marker-free transgenic plants. However, limited information is available on the correlation between inducer concentration and the expression level of the gene induced in monocots. Here, we produced a transgenic rice integrated estrogen-inducible GFP expression vector, pLex:GFP, and investigated dose-response and time-course patterns of GFP induction in rice calli and seedlings for the first time. With 17-ß-estradiol treatment at >5 µM, GFP signals were detected in the entire surface of calli within 2 days of culture. Highest GFP signals were extended for 8 days with estradiol treatment at 25 µM. In three-leaf-stage seedlings, GFP signals in the leaves of pLex:GFP-integrated transgenic lines were weaker than those in the leaves of p35S:GFP-integrated transgenic lines. However, GFP signals in the roots of pLex:GFP- and p35S:GFP-integrated transgenic lines were similar with estradiol treatment at >10 µM. With regard to controlling appropriate gene expression, these results might provide helpful indications on estradiol treatment conditions to be used for the XVE system in rice and other monocots.


Subject(s)
Estrogens/pharmacology , Green Fluorescent Proteins/metabolism , Oryza/drug effects , Oryza/metabolism , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/metabolism , Blotting, Southern , Blotting, Western , Green Fluorescent Proteins/genetics , Oryza/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Polymerase Chain Reaction
18.
J Environ Sci Health B ; 45(8): 773-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20936563

ABSTRACT

The transgenic Arabidopsis plants carrying a recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated ß-glucuronidase (GUS) reporter gene expression system were generated for assays of polychlorinated biphenyl (PCB) congeners. The selected transgenic Arabidopsis plant XgD2V11-6 exhibited a correlation between uptake of PCB126 and PCB126-induced GUS activity. Also, the plants showed induced GUS activity towards the supplemental indole 3-acetic acid (IAA). Thus, the GUS assay may reflect induction by both endogenous and exogenous AhR ligands. When biosurfactants, MEL-B, produced in the culture of yeast isolated from plants were used for assays of PCB congeners in the transgenic Arabidopsis plants, they showed marked PCB126 dose-dependent and toxic equivalency factor (TEF) dependent GUS activities. The effects of biosurfactants were clearer when the plants were cultivated on soils containing PCB congeners for 7 days as compared with on soils for 3 days as well as in the medium for 3 days. Therefore, it was estimated that biosurfactants form micellae with PCB congeners, which are easily uptaken by the plants in a mode of passive diffusion, transport into the aerial parts and then induce GUS activity.


Subject(s)
Arabidopsis/metabolism , Environmental Pollutants/metabolism , Gene Expression/drug effects , Genes, Reporter/drug effects , Plants, Genetically Modified/metabolism , Polychlorinated Biphenyls/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Surface-Active Agents/pharmacology , Animals , Arabidopsis/genetics , Cloning, Molecular , Environmental Monitoring , Environmental Pollutants/chemistry , Glucuronidase/genetics , Glucuronidase/metabolism , Guinea Pigs , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Polychlorinated Biphenyls/chemistry , Receptors, Aryl Hydrocarbon/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcriptional Activation/drug effects
19.
Plant Cell Physiol ; 46(9): 1515-24, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16020428

ABSTRACT

Despite carrying out C3 photosynthesis, wild watermelon (Citrullus lanatus sp.) exhibits exceedingly good tolerance to severe drought at high light intensities. However, the mechanism(s) by which this plant protects itself from photodamage has yet to be elucidated. In this study, we characterized wild watermelon cytochrome b561 (cyt b561), which potentially mediates regeneration of apoplastic ascorbate by transferring electrons from cytosolic ascorbate across the plasma membrane. Two cDNA species for wild watermelon cyt b561, designated CLb561A and CLb561B, were isolated. Levels of both CLb561A mRNA and protein were significantly elevated in the leaves during drought at a light intensity of 700 micromol photons m(-2) s(-1). The transcript of CLb561B was detected to a much lesser extent, but no CLb561B protein was produced under any condition used in this study. A transient expression assay with the CLb561A::green fluorescent protein fusion construct showed clear fluorescence on the plasma membrane of onion epidermal cells. The CLb561A protein was enriched in the plasma membrane fraction in leaves of transgenic tobacco expressing CLb561A. Moreover, the high activity of apoplastic ascorbate oxidase (AO), which was able to dispose of cyt b561-transferred reducing equivalents, increased in leaves of wild watermelon grown at high light intensity, but not lower light intensities. Taken together, these observations suggest the occurrence of a novel pathway for excess light energy dissipation in wild watermelon leaves, where excessive energy absorbed by chloroplasts can be transported to and dissipated safely in the apoplasts through the cooperative action of cyt b561 and AO.


Subject(s)
Ascorbate Oxidase/metabolism , Citrullus/enzymology , Cytochrome b Group/metabolism , Disasters , Light , Plant Leaves/enzymology , Amino Acid Sequence , Ascorbate Oxidase/chemistry , Ascorbate Oxidase/genetics , Base Sequence , Cloning, Molecular , Cytochrome b Group/chemistry , Cytochrome b Group/genetics , DNA Primers , DNA, Complementary , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid , Subcellular Fractions/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL