Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Article in Japanese | MEDLINE | ID: mdl-35314535

ABSTRACT

PURPOSE: It is necessary to perform gantry quality assurance (QA) in high precision radiotherapy. However, the O-ring type linear accelerator (Halcyon) does not have a light field and laser as a reference of isocenter point. The aim of this study is to investigate the usefulness of a three-dimensional diode array detector for gantry angle QA, and an O-ring type linear accelerator. METHOD: The gantry angle and rotational center were verified using the ArcCHECK 3D diode array on the general linear accelerator (TrueBeam) as a reference and Halcyon. The gantry angles were measured at 0, 90, 180, and 270°. The accuracy of the gantry rotational center was evaluated using rotational irradiation in the clockwise and counterclockwise directions between 181° and 179°. RESULTS: The QA system with ArcCHECK was able to apply on the TrueBeam and Halcyon. As a result of the accuracy of the gantry angle, the maximum error of value calculated from ArcCHECK was 0.1° compared with the nominal gantry angle of Halcyon. As a result of the accuracy of the gantry rotation isocenter of Halcyon, the distance between the isocenter and the gantry rotation center was 0.45 mm and 0.41 mm in the clockwise and counterclockwise directions, respectively. CONCLUSION: The QA system with ArcCHECK was useful for the gantry angle and the rotation center accuracy on the Halcyon.


Subject(s)
Particle Accelerators , Radiotherapy, Intensity-Modulated , Rotation
2.
Igaku Butsuri ; 27(1): 17-25, 2007.
Article in English | MEDLINE | ID: mdl-17917436

ABSTRACT

To measure the narrow beam used in stereotactic irradiation, installation of the ionization chamber parallel to the X-ray beam axis has been used instead of perpendicular installation. However, the definition of the effective point is a major problem in the parallel installation. In this study, we analyzed the effective point in parallel installation, and considered the prediction and evaluation of measurement point displacement. Relative dosimetry was carried out by installing the thimble ionization chamber in both perpendicular and parallel configurations. We then searched for the measurement point that coincided with the PDD of the perpendicular installation by using the displacement of the measurement point of the parallel installation. We found that the effective point of measurement for relative photon beam dosimetry depends on every detail of the chamber design, including the cavity length and the cavity radius. Moreover, the effective point of measurement also depends on the beam quality and the field size. The amount of effective point displacement for the parallel installation was quantified with the linear expression of TPR(20,10). Our results showed that the amount of effective point displacement can be estimated by the ionization volume of the dosimeter and the energy used.


Subject(s)
Radiometry , Radiosurgery , Humans , Monte Carlo Method , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...