Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Sci Rep ; 7(1): 6405, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743929

ABSTRACT

Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics.

2.
Chem Commun (Camb) ; 48(77): 9592-4, 2012 Oct 07.
Article in English | MEDLINE | ID: mdl-22911369

ABSTRACT

The triplex approach to DNA recognition is exploited to direct covalent inter-strand cross-links to unique locations within a pre-assembled DNA nanostructure. This approach can be used to improve the stability of DNA nanostructures and demonstrates the feasibility of directing other reactive groups to unique locations within these complexes.


Subject(s)
Cross-Linking Reagents/chemistry , DNA/chemistry , Nanostructures/chemistry , Base Sequence , Molecular Sequence Data
3.
Langmuir ; 28(22): 8296-9, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22582838

ABSTRACT

We report the synthesis of highly crystallographically textured films of stoichiometric bismuth telluride (Bi(2)Te(3)) in the presence of a surfactant, sodium lignosulfonate (SL), that resulted in the improved alignment of films in the (110) plane and offered good control over the morphology and roughness of the electrodeposited films. SL concentrations in the range 60-80 mg dm(-3) at a deposition potential of -0.1 V vs SCE (saturated calomel electrode) were found to yield the most improved crystallinity and similar or superior thermoelectric properties compared with results reported in the literature.

4.
ACS Nano ; 6(4): 3604-13, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22443318

ABSTRACT

DNA has been widely exploited for the self-assembly of nanosized objects and arrays that offer the potential to act as scaffolds for the spatial positioning of molecular components with nanometer precision. Methods that allow the targeting of components to specific locations within these structures are therefore highly sought after. Here we report that the triplex approach to DNA recognition, which relies on the specific binding of an oligonucleotide within the major groove of double-helical DNA, can be exploited to recognize specific loci within a DNA double-crossover tile and array, a nanostructure assembled by crossover strand exchange. The oligonucleotide can be targeted to both crossover and non-crossover strands and, surprisingly, across the region spanning the crossover junction itself. Moreover, by attaching biotin to the end of the oligonucleotide, we show that streptavidin molecules can be recruited to precise locations within a DX array, with an average spacing of 31.9 (±1.3) nm. This is a promising approach that could be exploited to introduce other components compatible with oligonucleotide synthesis into the wide variety of DNA nanostructures assembled by crossover strand exchange, such as those generated by DNA origami.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Base Sequence , DNA/genetics , DNA/metabolism , Deoxyribonuclease I/metabolism , Microscopy, Atomic Force , Models, Molecular , Nanotechnology/instrumentation , Streptavidin/metabolism
5.
Langmuir ; 26(22): 16980-5, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20923228

ABSTRACT

High-quality films of bismuth antimony telluride were synthesized by electrodeposition from nitric acid electroplating baths. The influence of a surfactant, sodium ligninsulfonate, on the structure, morphology, stoichiometry, and homogeneity of the deposited films has been investigated. It was found that addition of this particular surfactant significantly improved the microstructural properties as well as homogeneity of the films with a significant improvement in the thermoelectric properties over those deposited in the absence of surfactant. A detailed microprobe analysis of the deposited films yielded a stoichiometric composition of Bi(0.35)Sb(1.33)Te(3) for the films electrodeposited in the absence of surfactant and a stoichiometry of Bi(0.32)Sb(1.33)Te(3) for films deposited in the presence of surfactant.

6.
Phys Chem Chem Phys ; 11(18): 3584-90, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19421565

ABSTRACT

High density p-type Bi0.5Sb1.5Te3 nanowire arrays are produced by a combination of electrodeposition and ion-track lithography technology. Initially, the electrodeposition of p-type Bi0.5Sb1.5Te3 films is investigated to find out the optimal conditions for the deposition of nanowires. Polyimide-based Kapton foils are chosen as a polymer for ion track irradiation and nanotemplating Bi0.5Sb1.5Te3 nanowires. The obtained nanowires have average diameters of 80 nm and lengths of 20 microm, which are equivalent to the pore size and thickness of Kapton foils. The nanowires exhibit a preferential orientation along the {110} plane with a composition of 11.26 at.% Bi, 26.23 at.% Sb, and 62.51 at.% Te. Temperature dependence studies of the electrical resistance show the semiconducting nature of the nanowires with a negative temperature coefficient of resistance and band gap energy of 0.089+/-0.006 eV.

7.
Nanotechnology ; 20(19): 195603, 2009 May 13.
Article in English | MEDLINE | ID: mdl-19420642

ABSTRACT

In this study, we discuss the influence of DNA strand length on DNA wrapping of single-walled carbon nanotubes under high-shear sonication and find that different strand length results in changed DNA-nanotube interaction, which is sensitively probed by the upshift extent of the Raman radial breathing mode bands of nanotubes due to DNA wrapping. The difference in the interaction between nanotubes and DNA strands of various length results in apparently different degrees of wrapping compactness, revealed by atomic force microscopy observations, and nanotube selectivity in wrapping, indicated by both Raman and photoluminescence spectroscopy results. The above findings can be utilized to precisely control the nanotube diameter distribution and modulate the physicochemical properties of the nanotube wrapped by DNA without any direct functionalization of nanotubes. This finding is of considerable interest from both theoretical and practical standpoints.


Subject(s)
Crystallization/methods , DNA/chemistry , DNA/ultrastructure , Models, Chemical , Models, Molecular , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Computer Simulation , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
8.
Nucleic Acids Symp Ser (Oxf) ; (52): 683-4, 2008.
Article in English | MEDLINE | ID: mdl-18776564

ABSTRACT

The inherent self-assembly properties of DNA make it ideal in nanotechnology. We present a fully addressable DNA nanostructure with the smallest possible unit cell, a hexagon with a side-length of only 3.4 nm.(2,3) Using novel three-way oligonucleotides, where each side has a unique double-stranded DNA sequence that can be assigned a specific address, we will build a non-repetitive two-dimensional grid.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Benzene Derivatives/chemistry , Models, Molecular
9.
Nano Lett ; 7(12): 3832-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17983251

ABSTRACT

Here, we present the formation of a fully addressable DNA nanostructure that shows the potential to be exploited as, for example, an information storage device based on pH-driven triplex strand formation or nanoscale circuits based on electron transfer. The nanostructure is composed of two adjacent hexagonal unit cells (analogous to naphthalene) in which each of the eleven edges has a unique double-stranded DNA sequence, constructed using novel three-way oligonucleotides. This allows each ten base-pair side, just 3.4 nm in length, to be assigned a specific address according to its sequence. Such constructs are therefore an ideal precursor to a nonrepetitive two-dimensional grid on which the "addresses" are located at a precise and known position. Triplex recognition of these addresses could function as a simple yet efficient means of information storage and retrieval. Future applications that may be envisaged include nanoscale circuits as well as subnanometer precision in nanoparticle templating. Characterization of these precursor nanostructures and their reversible targeting by triplex strand formation is shown here using gel electrophoresis, atomic force microscopy, and fluorescence resonance energy transfer (FRET) measurements. The durability of the system to repeated cycling of pH switching is also confirmed by the FRET studies.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Oligodeoxyribonucleotides/chemistry , Models, Molecular , Naphthalenes/chemistry , Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemical synthesis , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL