Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(1): 480-487, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38150379

ABSTRACT

Gut microbiome targeting has emerged as a new generation of personalized medicine and a potential wellness and disease driver. Specifically, the gut redox balance plays a key role in shaping the gut microbiota and its link with the host, immune system, and disease evolution. In this sense, precise and personalized nutrition has proven synergy and capability to modulate the gut microbiome environment through the formulation of dietary interventions, such as vitamin support. Accordingly, there are urgent demands for simple and effective analytical platforms for understanding the relationship between the tailored vitamin administration and the gut microbiota balance by rapid noninvasive on-the-spot oxidation/reduction potential monitoring for frequent and close surveillance of the gut redox status and targeting by personalized nutrition interventions. Herein, we present a disposable potentiometric sensor chip and a homemade multiwell potentiometric array to address the interplay of vitamin levels with the oxidation/reduction potential in human feces and saliva. The potentiometric ORP sensing platforms have been successfully validated and scaled up for the setup of a multiapplication prototype for cross-talk-free simple screening of many specimens. The interpersonal variability of the gut microbiota environment illustrates the potential of feces and saliva samples for noninvasive, frequent, and decentralized monitoring of the gut redox status to support timely human microbiota surveillance and guide precise dietary intervention toward restoring and promoting personalized gut redox balance.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Feces , Vitamins , Oxidation-Reduction
2.
ACS Sens ; 8(10): 3892-3901, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37734056

ABSTRACT

While paper-based lateral-flow immunoassays (LFA) offer considerable promise for centralized diagnostic applications, the analytical capability of conventional LFA remains constrained due to the low sensitivity of its common optical detection strategy. To address these issues, we report a simple electrochemical LFA (eLFA) with nanocatalytic redox cycling for decentralized insulin detection. Simultaneous binding of insulin with detection antibodies and capture antibodies through the capillary flow at the LFA platform and signal amplification through the rapid nanocatalytic reduction of [Fe(CN)6]3- (Fe3+) with Au nanoparticles (AuNP) and ammonia-borane (AB), coupled to electrochemical redox cycling reactions involving Fe3+, AuNP, and AB on the carbon working electrode, offer higher sensitivity than conventional colorimetric LFA and enzymatic redox cycling. The resulting integrated eLFA strip allows the detection of low insulin concentrations (LOD = 12 pM) and offers considerable promise for highly sensitive decentralized assays of different biological fluids (saliva and serum) without additional pretreatment or washing steps.


Subject(s)
Insulin , Metal Nanoparticles , Gold , Immunoassay/methods , Insulin, Regular, Human , Oxidation-Reduction
3.
Nat Rev Endocrinol ; 19(8): 487-495, 2023 08.
Article in English | MEDLINE | ID: mdl-37217746

ABSTRACT

Tremendous progress has been made towards achieving tight glycaemic control in individuals with diabetes mellitus through the use of frequent or continuous glucose measurements. However, in patients who require insulin, accurate dosing must consider multiple factors that affect insulin sensitivity and modulate insulin bolus needs. Accordingly, an urgent need exists for frequent and real-time insulin measurements to closely track the dynamic blood concentration of insulin during insulin therapy and guide optimal insulin dosing. Nevertheless, traditional centralized insulin testing cannot offer timely measurements, which are essential to achieving this goal. This Perspective discusses the advances and challenges in moving insulin assays from traditional laboratory-based assays to frequent and continuous measurements in decentralized (point-of-care and home) settings. Technologies that hold promise for insulin testing using disposable test strips, mobile systems and wearable real-time insulin-sensing devices are discussed. We also consider future prospects for continuous insulin monitoring and for fully integrated multisensor-guided closed-loop artificial pancreas systems.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin Resistance , Pancreas, Artificial , Humans , Insulin/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Blood Glucose , Insulin Infusion Systems , Blood Glucose Self-Monitoring , Hypoglycemic Agents/therapeutic use
4.
Int J Biol Macromol ; 241: 124574, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37100334

ABSTRACT

Biomolecule-conjugated metal nanoparticles (NPs) have been primarily used as colorimetric labels in affinity-based bioassays for point-of-care testing. A facile electrochemical detection scheme using a rapid nanocatalytic reaction of a metal NP label is required to achieve more quantitative and sensitive point-of-care testing. Moreover, all the involved components should be stable in their dried form and solution. This study developed a stable component set that allows for rapid and simple nanocatalytic reactions combined with electrochemical detection and applied it for the sensitive detection of parathyroid hormone (PTH). The component set consists of an indium-tin oxide (ITO) electrode, ferrocenemethanol (FcMeOH), antibody-conjugated Au NPs, and ammonia borane (AB). Despite being a strong reducing agent, AB is selected because it is stable in its dried form and solution. The slow direct reaction between FcMeOH+ and AB provides a low electrochemical background, and the rapid nanocatalytic reaction allows for a high electrochemical signal. Under optimal conditions, PTH could be quantified in a wide range of concentrations in artificial serum, with a detection limit of ∼0.5 pg/mL. Clinical validation of the developed PTH immunosensor using real serum samples indicates that this novel electrochemical detection scheme is promising for quantitative and sensitive immunoassays for point-of-care testing.


Subject(s)
Biosensing Techniques , Immunoconjugates , Metal Nanoparticles , Gold , Parathyroid Hormone , Immunoassay , Electrochemical Techniques , Limit of Detection , Electrodes
5.
J Mater Chem B ; 11(10): 2258-2265, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36799139

ABSTRACT

An electron mediator with rapid dissolvability and high solubility in aqueous electrolyte solutions is essential for point-of-care testing based on mediated electrochemical detection. However, most ferrocenyl (Fc) compounds have slow dissolvability and poor solubility owing to high hydrophobicity of the Fc backbone. Moreover, many Fc compounds have poor stability and nonoptimal formal potential (). Herein, we present an Fc compound, Fc8m2c, which exhibits rapid dissolvability, high solubility, good stability, and moderate along with its high electron-mediation rate. The of Fc8m2c (0.17 V vs. Ag/AgCl) is tuned by two electron-withdrawing acyl substituents and eight electron-donating methyl substituents. Two pendant carboxylate groups of Fc8m2c allow for rapid dissolvability and high solubility (0.63 M in water), whereas full substitution in its two cyclopentadienyl ligands facilitates good chemical stability against decomposition in the presence of dissolved O2 and ambient light. A moderate enables the application of a potential of 0.07 V at which electrochemical background currents are low and also contributes toward resisting the decomposition of both Fc8m2c and Fc8m2c+. Fc8m2c provides a high electron-mediation rate constant (2.4 × 106 M-1 s-1) in glucose detection using glucose dehydrogenase. When Fc8m2c is applied to a glucose sensor, the calculated detection limit is ∼0.1 mM with a measurement period of 5 s. Considering that the normal concentration of glucose in serum is between 3.9 and 6.6 mM, the detection limit is sufficiently low. These results show that Fc8m2c is an excellent electron-mediator candidate for sensitive and rapid glucose detection.


Subject(s)
Ferrous Compounds , Glucose , Ferrous Compounds/chemistry , Glucose/chemistry , Metallocenes , Solubility , Electrochemical Techniques
6.
J Am Chem Soc ; 144(38): 17700-17708, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36112651

ABSTRACT

Conventional sandwich immunosensors rely on antibody recognition layers to selectively capture and detect target antigen analytes. However, the fabrication of these traditional affinity sensors is typically associated with lengthy and multistep surface modifications of electrodes and faces the challenge of nonspecific adsorption from complex sample matrices. Here, we report on a unique design of bioelectronic affinity sensors by using natural cell membranes as recognition layers for protein detection and prevention of biofouling. Specifically, we employ the human macrophage (MΦ) membrane together with the human red blood cell (RBC) membrane to coat electrochemical transducers through a one-step process. The natural protein receptors on the MΦ membrane are used to capture target antigens, while the RBC membrane effectively prevents nonspecific surface binding. In an attempt to detect tumor necrosis factor alpha (TNF-α) cytokine using the bioelectronic affinity sensor, it demonstrates a remarkable limit of detection of 150 pM. This new sensor design integrates natural cell membranes and electronic transduction, which offers synergistic functionalities toward a broad range of biosensing applications.


Subject(s)
Biosensing Techniques , Antigens , Cell Membrane , Electrochemical Techniques , Electrodes , Humans , Immunoassay , Tumor Necrosis Factor-alpha
7.
Anal Chem ; 94(4): 2163-2171, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35043633

ABSTRACT

Direct electron transfer (DET) between a redox label and an electrode has been used for sensitive and selective sandwich-type detection without a wash step. However, applying DET is still highly challenging in protein detection, and a single redox label per probe is insufficient to obtain a high electrochemical signal. Here, we report a wash-free, sandwich-type detection of thrombin using DET and catalytic signal amplification of multiple redox labels. The detection scheme is based on (i) the redox label-catalyzed oxidation of a reductant, (ii) the conjugation of multiple redox labels per probe using a poly-linker, (iii) the low nonspecific adsorption of the conjugated poly-linker due to uncharged, reduced redox labels, and (iv) a facile DET using long, flexible poly-linker and spacer DNA. Amine-reactive phenazine ethosulfate and NADH were used as the redox label and reductant, respectively. N3-terminated polylysine was used as the poly-linker for the conjugation between an aptamer probe and multiple redox labels. Approximately 11 redox labels per probe and rapid catalytic NADH oxidation enable high signal amplification. Thrombin in urine could be detected without a wash step with a detection limit of ∼50 pM, which is practically promising for point-of-care testing of proteins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Catalysis , Electrochemical Techniques , Electrodes , Electrons , Limit of Detection , Oxidation-Reduction
8.
Adv Healthc Mater ; 11(2): e2101819, 2022 01.
Article in English | MEDLINE | ID: mdl-34706164

ABSTRACT

The commonly required properties of diffusive electron mediators for point-of-care testing are rapid dissolubility, high stability, and moderate formal potential in aqueous solutions. Inspired by nature, various quinone-containing electron mediators have been developed; however, satisfying all these requirements remains a challenge. Herein, a strategic design toward quinones incorporating sulfonated thioether and nitrogen-containing heteroarene moieties as solubilizing, stabilizing, and formal potential-modulating groups is reported. A systematic investigation reveals that di(thioether sulfonate)-substituted quinoline-1,4-dione (QLS) and quinoxaline-1,4-dione (QXS) display water solubilities of ≈1 m and are rapidly dissoluble. By finely balancing the electron-donating effect of the thioethers and the electron-withdrawing effect of the nitrogen atom, formal potentials suitable for electrochemical biosensors are achieved with QLS and QXS (-0.15 and -0.09 V vs Ag/AgCl, respectively, at pH 7.4). QLS is stable for >1 d in PBS (pH 7.4) and for 1 h in tris buffer (pH 9.0), which is sufficient for point-of-care testing. Furthermore, QLS, with its high electron mediation ability, is successfully used in biosensors for sensitive detection of glucose and parathyroid hormone, demonstrating detection limits of ≈0.3 × 10-3 m and ≈2 pg mL-1 , respectively. This strategy produces organic electron mediators exhibiting rapid dissolution and high stability, and will find broad application beyond quinone-based biosensors.


Subject(s)
Biosensing Techniques , Electrons , Glucose , Glucose Oxidase/chemistry , Sulfides
9.
Biosens Bioelectron ; 197: 113773, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34763152

ABSTRACT

Enzyme-induced seedless Ag deposition is useful for selective Ag deposition and subsequent electrochemical Ag oxidation; however, a washing step is required after the deposition and before the electrochemical oxidation as the enzyme substrate can be oxidized during the electrochemical oxidation. Here, we report a fast Ag deposition method using a redox enzyme and quinone substrate that does not require a washing step. We found that the quinone substrate is reduced by a redox enzyme label, which is later oxidized to its original form via the reduction of Ag+ to Ag. Moreover, the quinone substrate is not electrochemically oxidized during the electrochemical Ag oxidation. We selected one diaphorase and 1,4-naphthoquinone from among seven redox enzymes (four diaphorases and three glucose-oxidizing enzymes) and six quinones, respectively. We applied this Ag deposition method for the detection of thyroid-stimulating hormone (TSH) over a dynamic range from 100 fg/mL to 100 ng/mL and found that TSH could be detected at concentrations as low as approximately 100 fg/mL in artificial serum. Therefore, the Ag deposition strategy developed in this study exhibits promising potential for ultrasensitive clinical applications.


Subject(s)
Biosensing Techniques , Benzoquinones , Electrochemical Techniques , Oxidation-Reduction , Thyrotropin
10.
Biosens Bioelectron ; 179: 113065, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33578116

ABSTRACT

Recombinase polymerase amplification (RPA) is considered one of the best amplification methods for realizing a miniaturized diagnostic instrument; however, it is notably challenging to obtain low detection limits in solid-phase RPA. To overcome these difficulties, we combined solid-phase RPA with electrochemical detection and used a new concentration combination of three primers (surface-bound forward primer, solution reverse primer, and an extremely low concentration of solution forward primer). When solid-phase RPA was performed on an indium tin oxide (ITO) electrode modified with a surface-bound forward primer in a solution containing a biotin-terminated solution reverse primer, an extremely low concentration of a solution forward primer, and a template DNA or genomic DNA for a target gene of hepatitis B virus (HBV), amplification occurred mainly in solution until all the solution forward primers were consumed. Subsequently, DNA amplicons produced in solution participated in solid-phase amplification involving surface-bound forward primer and solution reverse primer. Afterward, neutravidin-conjugated DT-diaphorase (DT-D) was attached to a biotin-terminated DNA amplicon on the ITO electrode. Finally, chronocoulometric charges were measured using electrochemical-enzymatic redox cycling involving the ITO electrode, 1,4-naphthoquinone, DT-D, and reduced ß-nicotinamide adenine dinucleotide. The detection limit for HBV was measured using microfabricated electrodes and was found to be approximately 0.1 fM. This proposed method demonstrated better amplification efficiency for HBV genomic DNA than solid-phase RPA without using additional solution primer and asymmetric solid-phase RPA.


Subject(s)
Biosensing Techniques , Hepatitis B , DNA, Viral/genetics , Hepatitis B/diagnosis , Humans , Nucleic Acid Amplification Techniques , Recombinases , Sensitivity and Specificity
11.
Biosens Bioelectron ; 171: 112727, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33069956

ABSTRACT

Horseradish peroxidase (HRP)-based electrochemical immunoassays are considered promising techniques for point-of-care clinical diagnostics, but the necessary addition of unstable H2O2 in the enzymatic system may hinder their practical application. Although glucose oxidase (GOx) has been widely explored for in situ generation of H2O2 in HRP-based immunoassay, the GOx-catalyzed reduction of oxidized peroxidase substrate may limit the immunosensing performance. Here, we report a sensitive electrochemical immunosensor based on a choline oxidase (ChOx)-HRP cascade reaction. In this design, ChOx catalyzes the oxidation of choline, during which H2O2 is generated in situ and thus oxidizes acetaminophen (APAP) in the presence of HRP. The electrochemical behavior of APAP in the ChOx-HRP cascade was compared with that of the commonly used GOx-HRP cascade, which confirmed that ChOx could be a superior preceding enzyme for sensitive immunoassay based on the bienzymatic cascade. The developed ChOx-HRP cascade was also further explored for a sandwich-type electrochemical immunoassay of parathyroid hormone in artificial and clinical serum. The calculated detection limit was ~3 pg/mL, indicating that the ChOx-HRP cascade is especially promising for highly sensitive electrochemical immunoassays when APAP is used as the peroxidase substrate.


Subject(s)
Biosensing Techniques , Peroxidase , Alcohol Oxidoreductases , Electrochemical Techniques , Horseradish Peroxidase , Hydrogen Peroxide , Immunoassay
12.
Angew Chem Int Ed Engl ; 59(50): 22419-22422, 2020 12 07.
Article in English | MEDLINE | ID: mdl-32875647

ABSTRACT

Metal nanoparticle surfaces are used for peroxidase- and oxidase-like nanozymes but not for esterase-like nanozymes. It is challenging to obtain rapid catalytic hydrolysis on a metal surface and even more so without a catalytically labile substrate. Here, we report that metal nanoparticle surfaces rapidly catalyze non-redox ester hydrolysis in the presence of redox H3 N-BH3 (AB). Metal hydrides are readily generated on a Pt nanoparticle (PtNP) from AB, and as a result the PtNP becomes electron-rich, which might assist nucleophilic attack of H2 O on the carbonyl group of an ester. The nanozyme system based on PtNP, AB, and 4-aminonaphthalene-1-yl acetate provides an electrochemical signal-to-background ratio much higher than natural enzymes, due to the rapid ester hydrolysis and redox cycling involving the hydrolysis product. The nanozyme system is applied in a sensitive electrochemical immunosensor for thyroid-stimulating hormone detection. The calculated detection limit is approximately 0.3 pg mL-1 , which indicates the high sensitivity of the immunosensor using the PtNP nanozyme.


Subject(s)
Ammonia/chemistry , Boranes/chemistry , Esters/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Thyroid Hormones/analysis , Biosensing Techniques , Catalysis , Electrochemical Techniques , Hydrolysis , Immunoassay , Molecular Structure , Oxidation-Reduction , Surface Properties
13.
Biosens Bioelectron ; 165: 112337, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32729481

ABSTRACT

In horseradish peroxidase (HRP)-based electrochemical immunosensing, an appropriate HRP substrate needs to be chosen to obtain a high electrochemical signal-to-background ratio. This is limited by the unwanted electrochemical reduction of H2O2, oxidation of the substrate, and the slow electrochemical reduction of the product. Herein, we report acetaminophen (AMP) as a new HRP substrate that allows for highly sensitive immunosensing. Electrochemical behavior and immunosensing performance using AMP are compared with those using the most popular HRP substrate, hydroquinone (HQ). To maintain a high electrocatalytic activity even at an electrode modified with an immunosensing layer, an indium tin oxide electrode partially modified with reduced graphene oxide is employed. AMP allows for a higher signal-to-background ratio than HQ, because the formal potential of AMP is 0.28 V higher than that of HQ and the redox reaction of AMP is as reversible as that of HQ, resulting in a lower detection limit in a sandwich-type immunoassay using AMP for thyroid-stimulating hormone detection. The calculated detection limit is ~0.2 pg/mL. The use of AMP as an HRP substrate is especially promising for highly sensitive electrochemical immunoassays.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Acetaminophen , Electrochemical Techniques , Gold , Horseradish Peroxidase , Hydrogen Peroxide , Immunoassay , Peroxidase
14.
Anal Chem ; 92(5): 3932-3939, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32083468

ABSTRACT

Catalytic precipitation and subsequent electrochemical oxidation or reduction of a redox-active precipitate has been widely used in electrochemical biosensors. However, such biosensors often do not allow for low detection limits due to a low rate of precipitation, nonspecific precipitation, loose binding of the precipitate to the electrode surface, and insulating behavior of the precipitate within a normal potential window. Here, we report an ultrasensitive electrochemical immunosensor for parathyroid hormone (PTH) detection based on DT-diaphorase (DT-D)-catalyzed formation of an organic precipitate and electrochemical oxidation of the precipitate. In the present study we found that DT-D can be used as a catalytic label in precipitation-based affinity biosensors because DT-D catalyzes fast reduction of 3-(4,-5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to MTT-formazan precipitate; the MTT reduction does not occur in the absence of DT-D; and a high electrochemical signal is obtained at low potentials during electrodissolution of MTT-formazan precipitate. The immunosensor is fabricated using a silane copolymer-modified ITO electrode surface that is suitable for both efficient and strong adsorption of MTT-formazan precipitate. When the enzymatic MTT-formazan precipitation and subsequent MTT-formazan electrodissolution is applied to a sandwich-type immunosensor, PTH can be detected over a wide range of concentrations with a very low detection limit (∼1 pg/mL) in artificial serum. The measured concentrations of PTH in clinical serum samples showed high similarity with those obtained using a commercial instrument.


Subject(s)
Biosensing Techniques/methods , Formazans/chemistry , NAD(P)H Dehydrogenase (Quinone)/chemistry , Parathyroid Hormone/analysis , Tetrazolium Salts/chemistry , Catalysis , Electrochemical Techniques , Electrodes , Humans , Oxidation-Reduction , Parathyroid Hormone/blood
15.
ACS Sens ; 4(11): 2966-2973, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31647639

ABSTRACT

Carboxyl esterases show limited use as catalytic labels in bioassays because of slow enzymatic reaction. We report that DT-diaphorase from Bacillus stearothermophilus (DT-D, EC 1.6.99.-) shows high carboxyl esterase-like activity in the presence of reduced ß-nicotinamide adenine dinucleotide (NADH) and may be used as a better catalytic label than carboxyl esterases. DT-D is a redox enzyme and can participate in signal-amplifying redox cycling. Thus, an electrochemical immunosensor using a DT-D label allows for triple signal amplification based on (i) hydrolysis of a carboxyl ester, (ii) electrochemical-chemical (EC) redox cycling involving an electrode, a hydrolysis product, and NADH, and (iii) electrochemical-enzymatic (EN) redox cycling involving an electrode, a hydrolysis product, DT-D, and NADH. Ester hydrolysis by DT-D is confirmed via spectrophotometric measurement of a chromogenic substrate (4-nitrophenyl acetate) and 1H NMR spectra. Among two phenyl acetates and four naphthyl acetates considered, 4-aminonaphthalene-1-yl acetate (4-NH2-NAc) is chosen as the best acetyl ester substrate because 4-NH2-NAc is stable, its hydrolysis is slow in the absence of DT-D, its hydrolysis is very fast in the presence of DT-D, and EC and EN redox cycling involving the hydrolysis product (4-amino-1-naphthol) is rapid. However, hydrolysis of 4-NH2-NAc by esterase from porcine liver (EC 3.1.1.1.) is very slow. When DT-D is applied to sandwich-type detection of thyroid-stimulating hormone in artificial serum, the detection limit is ∼2 pg/mL, indicating that the developed immunosensor is highly sensitive because of triple signal amplification. DT-D may be used as a catalytic label in sensitive and stable bioassays instead of common alkaline phosphatase and horseradish peroxidase.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Geobacillus stearothermophilus/enzymology , Immunoassay , NAD(P)H Dehydrogenase (Quinone)/metabolism , Electrodes , Hydrolysis , NAD(P)H Dehydrogenase (Quinone)/analysis , Oxidation-Reduction
16.
ACS Sens ; 4(6): 1641-1647, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31188576

ABSTRACT

Enzymatically induced silver deposition and subsequent electrochemical oxidation have been widely used in electrochemical biosensors. However, this method is ineffective for producing highly enhanced silver deposition for use in ultrasensitive detection. Herein, we report a fast silver deposition method that simultaneously uses three signal amplification processes: (i) enzymatic amplification, (ii) chemical-chemical (CC) redox cycling, and (iii) chemical-enzymatic (CN) redox cycling. DT-diaphorase (DT-D) is used for enzymatic amplification to convert a nitroso compound, a species incapable of directly reducing Ag+ to an amine compound, which can directly reduce Ag+. NADH acts as a reducing agent for the indirect reduction of Ag+ via the two redox cycling processes. 4-Nitroso-1-naphthol is converted to 4-amino-1-naphthol (NH2-N) in the presence of DT-D. NH2-N initiates two redox cycling processes: NH2-N, along with Ag+ and NADH, are involved in the CC redox cycling, whereas NH2-N, along with Ag+, DT-D, and NADH, are involved in the CN redox cycling. Finally, the deposited silver is electrochemically oxidized to produce a signal. When this triple signal amplification strategy for fast silver deposition is applied to an electrochemical immunosensor for detecting parathyroid hormone (PTH), a detection limit as low as ∼100 fg/mL is obtained. The concentrations of PTH in clinical serum determined using the developed immunosensor are found to agree with those measured using a commercial instrument. Thus, the use of this strategy for fast silver deposition is highly promising for ultrasensitive electrochemical detection and biosensing applications.


Subject(s)
Electrochemical Techniques/methods , Immunoassay/methods , Nitroso Compounds/chemistry , Parathyroid Hormone/blood , Silver/chemistry , 1-Naphthylamine/analogs & derivatives , Antibodies, Immobilized/immunology , Bacterial Proteins/chemistry , Geobacillus stearothermophilus/enzymology , Humans , Limit of Detection , NAD(P)H Dehydrogenase (Quinone)/chemistry , Oxidation-Reduction , Parathyroid Hormone/immunology
17.
Anal Chem ; 91(7): 4680-4686, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30882203

ABSTRACT

DT-diaphorase (DT-D) is known to mainly catalyze the two-electron reduction of quinones and nitro(so) compounds. Detection of Gram-negative bacterial outer membrane vesicles (OMVs) that contain pyrogenic lipopolysaccharides (LPSs, also called endotoxins) is required for evaluating the toxic effects of analytical samples. Here, we report that DT-D has a high dephosphorylation activity: DT-D catalyzes reductive dephosphorylation of a phosphate-containing substrate in the presence of NADH. We also report that sensitive and simple OMV detection is possible with a sandwich-type electrochemical immunosensor using DT-D and two identical LPS-binding antibodies as a catalytic label and two sandwich probes, respectively. The absorbance change in a solution containing 4-nitrophenyl phosphate indicates that dephosphorylation occurs in the presence of both DT-D and NADH. Among the three phosphate-containing substrates [4-aminophenyl phosphate, ascorbic acid phosphate, and 1-amino-2-naphthyl phosphate (ANP)] that can be converted into electrochemically active products after dephosphorylation, ANP shows the highest electrochemical signal-to-background ratio, because (i) the dephosphorylation of ANP by DT-D is fast, (ii) the electrochemical oxidation of the dephosphorylated product (1-amino-2-naphthol, AN) is rapid, even at a bare indium-tin oxide electrode, and (iii) two redox cycling processes significantly increase the electrochemical signal. The two redox cycling processes include an electrochemical-enzymatic redox cycling and an electrochemical-chemical redox cycling. The electrochemical signal in a neutral buffer (tris buffer, pH 7.5) is comparable to that in a basic buffer (tris buffer, pH 9.5). When the immunosensor is applied to the detection of OMV from Escherichia coli, the detection limit is found to be 8 ng/mL. This detection strategy is highly promising for the detection of biomaterials, including other extracellular vesicles.


Subject(s)
Escherichia coli/chemistry , Extracellular Vesicles/chemistry , NAD(P)H Dehydrogenase (Quinone)/metabolism , Phosphoric Monoester Hydrolases/metabolism , Biocatalysis , NAD(P)H Dehydrogenase (Quinone)/chemistry , Phosphoric Monoester Hydrolases/chemistry
19.
Anal Chem ; 90(22): 13491-13497, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30403470

ABSTRACT

Rapid and sensitive mold detection is becoming increasingly important, especially in indoor environments. Common mold detection methods based on double-mediated electron transfer between an electrode and molds are not highly sensitive and reproducible, although they are rapid and simple. Here, we report a sensitive and reproducible detection method specific to Aspergillus niger ( A. niger), based on a single-mediator system combined with electrochemical-chemical (EC) redox cycling. Intracellular NAD(P)H-oxidizing enzymes in molds can convert electro-inactive hydroxy-nitro(so)arenes into electro-active hydroxy-aminoarenes. Since the membrane and wall of A. niger is well permeable to both a substrate (4-nitro-1-naphthol) and a reduced product (4-amino-1-naphthol) in tris buffer (pH 7.5) solution, the electrochemical signal is increased in the presence of A. niger due to two reactions: (i) enzymatic reduction of the substrate to the reduced product and (ii) electrochemical oxidation of the reduced product to an oxidized product. When a reducing agent (NADH) is present in the solution, the oxidized product is reduced back to the reduced product and then electrochemically reoxidized. This EC redox cycling significantly amplifies the electrochemical signal. Moreover, the background level is low and highly reproducible because the substrate and the reducing agent are electro-inactive at an applied potential of 0.20 V. The calculated detection limit for A. niger in a common double-mediator system consisting of Fe(CN)63- and menadione is ∼2 × 104 colony-forming unit (CFU)/mL, but the detection limit in the single-mediator system combined with EC redox cycling is ∼2 × 103 CFU/mL, indicating that the newly developed single-mediator system is more sensitive. Importantly, the detection method requires only an incubation period of 10 min and does not require a washing step, an electrode modification step, or a specific probe.


Subject(s)
Aspergillus niger/isolation & purification , Electrochemical Techniques/methods , Microbiological Techniques/methods , Aspergillus niger/enzymology , Humans , Limit of Detection , NADPH Oxidases/chemistry , Naphthols/chemistry , Nitro Compounds/chemistry , Oxidation-Reduction , Reproducibility of Results , Sensitivity and Specificity
20.
Anal Chem ; 90(18): 10982-10989, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30148606

ABSTRACT

Simple and sensitive competitive immunosensors for small molecules are difficult to obtain, especially in serum containing numerous interfering species (ISs) with different concentrations. Herein, we report a washing-free and sensitive (competitive) displacement immunosensor for cortisol in human serum, based on electron mediation of Os(bpy)2Cl2 between an electrode and a redox label [oxygen-insensitive diaphorase (DI)] (i.e., electrochemical-enzymatic redox cycling). The anticortisol IgG-DI conjugate bound to a cortisol-immobilized electrode is displaced by competitive binding of cortisol in serum and diffuses away from the electrode during incubation; therefore, the concentration of the displaced conjugate near the electrode becomes very low, even without washing. Electrochemically interfering ascorbic acid is converted to a redox-inactive species by ascorbate oxidase during incubation. The remaining bound conjugate mainly contributes to electrochemical currents. Compared with ferrocene methanol, Fe(CN)64-, and Ru(NH3)63+, the electrochemical and redox cycling behaviors of Os(bpy)2Cl2 are influenced significantly less by ISs in serum. Comparative studies reveal that washing-free displacement assay shows better cortisol-induced signal change than three other assays. The surface concentration of cortisol immobilized on the electrode is optimized, because the electrochemical signal is highly dependent on the surface concentration. When the washing-free displacement immunosensor is applied for the detection of cortisol in artificial serum, cortisol is measured with a detection limit of ∼30 pM within 12 min. The cortisol concentrations measured in clinical serum samples agree well with those obtained using a commercial instrument. The new immunosensor is highly promising for the simple, sensitive, and rapid point-of-care detection of small molecules.


Subject(s)
Biosensing Techniques/instrumentation , Hydrocortisone/blood , Immunoenzyme Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrodes , Equipment Design , Geobacillus stearothermophilus/enzymology , Humans , Immunoconjugates/chemistry , Limit of Detection , Point-of-Care Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...