Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38444320

ABSTRACT

The eukaryotic fungal species Candida albicans is a critical infective pathogenic agent. The ß-amino acid, Icofungipen, is an effective inhibitor of Candida albicans. Icofungipen binds at the active site of the isoleucyl tRNA synthetase (IleRS) from Candida albicans (CaIleRS) and halts protein translation in fungus. In the present work, we have investigated the mechanism of binding of Icogungipen (abbreviated as IFP). Molecular dynamics (MD) simulations show that the carboxylic acid group of IFP in the CaIleRS: IFP complex is more oriented towards the Connective Polypeptide (CP) core loop compared to the carboxylic acid group of Ile in the CaIleRS: Ile complex. The Arg 410 of the CP core loop near the substrate is extended towards the IFP. Due to the difference in the conformation of residues of the CP core loop, the KMSKR loop is more proximal to the CP core loop in CaIleRS: IFP. The editing domain which is covalently linked with the CP core loop in the CaIleRS: IFP complex is also oriented in such a way that the active site cavity is narrow and longer. The metadynamics calculation shows that the IFP is trapped in a deeper potential well compared to Ile which is due to the effective closure of the gateway of the active site by KMSKR and CP core loop. The thin, long shape of the active site and the closed gate of the active site in CaIleRS: IFP complex is responsible for the effective capture of IFP relative to Ile in the active site.Communicated by Ramaswamy H. Sarma.

2.
Curr Protoc ; 3(3): e699, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36892286

ABSTRACT

Developing an understanding of the interactions between an antibiotic and its binding site in a pathogen cell is the key to antibiotic design-an important cost-saving methodology compared to the costly and time-consuming random trial-and-error approach. The rapid development of antibiotic resistance provides an impetus for such studies. Recent years have witnessed the beginning of the use of combined computational techniques, including computer simulations and quantum mechanical computations, to understand how antibiotics bind at the active site of aminoacyl tRNA synthetases (aaRSs) from pathogens. Such computational protocols assist the knowledge-based design of antibiotics targeting aaRSs, which are their validated targets. After the ideas behind the protocols and their strategic planning are discussed, the protocols are described along with their major outcomes. This is followed by an integration of results from the different basic protocols. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Analysis of active-site residues from primary sequence of synthetase and transfer RNAs Basic Protocol 2: Molecular dynamics simulation-based protocol to study the structure and dynamics of the aaRS active site:antibiotic complex Basic Protocol 3: Quantum mechanical method-based protocol to study the structure and dynamics of the aaRS active site:antibiotic complex.


Subject(s)
Amino Acyl-tRNA Synthetases , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites , Catalytic Domain , Molecular Dynamics Simulation
3.
J Phys Chem B ; 126(3): 620-633, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35015537

ABSTRACT

The development of new antimicrobial drugs is critically needed due to the alarming increase in antibiotic resistance in bacterial pathogens. The active sites of different bacterial aminoacyl tRNA synthetases (aaRS) are validated targets of antibiotics. At present, the only aaRS inhibitor approved is mupirocin (MRC) which targets bacterial isoleucyl tRNA synthetase (IleRS). The present work is aimed at understanding the lacunae of knowledge concerning the active site conformational dynamics in IleRS in the presence of inhibitor mupirocin. With this end in view, we have carried out classical molecular dynamics simulation and metadynamics simulations of the open state of IleRS from Staphylococcus aureus (SaIleRS), the closed state tripartite complex bound with cognate adenylate (Ile-AMP) and tRNA, the closed state tripartite complex bound with noncognate MRC, and the closed state tripartite complex bound with tRNA and MRC with mutated SaIleRS (V588F). The present simulation established a dynamic picture of SaIleRS complexed with cognate and the noncognate substrates which are completely consistent with crystallographic and biochemical studies and explain the existing lacunae of knowledge. The active site is significantly more compact in the Ile-AMP bound complex compared to the open state due to the closure of the KMSKS and HMGH loops and clamping down of the tRNA acceptor end near the active site gate. The present result shows that the unusual open conformational state of the KMSKS loop observed in the cognate substrate-bound complex in the crystal is due to crystallographic constraints. Although the mupirocin tightly fits the catalytic active site in the MRC-bound complex, the nonanoic acid moiety is partly exposed to the water. The KMSKS loop is pushed open in the MRC-bound complex to accommodate the noncognate MRC. New tunnels open up, extending to the editing site in the complex. Out of its three broad segments, the C12 to C17 segment, the conjugated segment, and the nonanoic moiety, the conjugated part of MRC binds most effectively with the active site of the MRC-bound complex. The aromatic residues packing around the C12 to C17 segment of MRC stabilize the tRNA hairpin conformation in a similar way as observed in the TrpRS. The V588F mutation is weakening the interaction between this region of the active site and weakens the binding of MRC in the active site. This result explains why the V588F mutation is responsible for low-level mupirocin resistance. The free energy of unbinding the conjugated segment (and C12 to C17 segment, as well) largely contributes to the total free energy of unbinding the MRC. The active site organization of IleRS from eukaryotic Candida albicans is compared with the bacterial IleRS active site to understand the low binding affinity in eukaryotic IleRS. The present study could be a starting point of future studies related to the development of effective drug binding in the SaIleRS.


Subject(s)
Isoleucine-tRNA Ligase , Mupirocin , Catalytic Domain , Isoleucine-tRNA Ligase/chemistry , Isoleucine-tRNA Ligase/genetics , Isoleucine-tRNA Ligase/metabolism , Mupirocin/chemistry , Mupirocin/pharmacology , Staphylococcus aureus/metabolism
4.
J Biomol Struct Dyn ; 40(18): 8538-8559, 2022 11.
Article in English | MEDLINE | ID: mdl-33896406

ABSTRACT

Aminoacylation reaction is the first step of protein biosynthesis. Transfer RNA (tRNA) is charged with an amino acid in this reaction and the reaction is catalyzed by aminoacyl tRNA synthetase enzyme (aaRS). In the present work, we use classical molecular dynamics simulation to show that the tRNA bound Mg2+ ions significantly influence the charging step of class I TtGluRS: Glu-AMP: tRNAGlu and class II dimeric TtSerRS: Ser-AMP: tRNASer. The CCA end of the acceptor terminal is disordered in the absence of coordinated Mg2+ ions and the CCA end can freely explore beyond the specific conformational space of the tRNA in its precharging state. A balance between the conformational disorder of the tRNA and the restriction imposed on the CCA terminal via coordination with the Mg2+ ions is needed for the placement of the CCA terminal in a precharging state organization. This result provides a molecular-level explanation of the experimental observation that the presence of Mg2+ ions is a necessary condition for a successful aminoacylation reaction.Communicated by Ramaswamy H. Sarma.


Subject(s)
Amino Acyl-tRNA Synthetases , Serine-tRNA Ligase , Adenosine Monophosphate/metabolism , Amino Acids/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Aminoacylation , Glutamate-tRNA Ligase/chemistry , Glutamate-tRNA Ligase/genetics , Glutamate-tRNA Ligase/metabolism , Ions , Ligases/metabolism , Magnesium , RNA, Transfer/metabolism , RNA, Transfer, Glu/metabolism , RNA, Transfer, Ser/metabolism , Serine-tRNA Ligase/chemistry
5.
Gene ; 812: 146099, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34906645

ABSTRACT

Nasopharyngeal Carcinoma (NPC) found to be dependent on geographical and racial variation and is more prevalent in Northeast (NE) India. WES-based study was conducted in three states (tribes); Nagaland (Naga), Mizoram (Mizo) and Manipur (Manipuri), which provided an overview of germline variants involved inthemajor signaling pathways. Validation and recurrence assessment of WES data confirmed the risk effect of STEAP3_rs138941861 and JAG1_rs2273059, and the protective role of PARP4_rs17080653 and TGFBR1_rs11568778 variants, where STEAP3_rs138941861conferring Arg290His substitution was the only exonic non-synonymous variant and to be located in proximity to the linking region between the transmembrane and oxidoreductasedomainsof STEAP3 protein, andaffectedits structural and functional dynamics by altering the Electrostatic Potential around this connecting region. Moreover, these significantly associated variants having deleterious effect were observed to have interactions in p53 signaling pathway which emphasizes the importance of this pathway in the causation of NPC.


Subject(s)
Cell Cycle Proteins/genetics , Exome Sequencing/methods , Jagged-1 Protein/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Nuclear Proteins/genetics , Oxidoreductases/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , Adult , Amino Acid Substitution , Case-Control Studies , Cell Cycle Proteins/chemistry , Female , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , India , Male , Middle Aged , Models, Molecular , Oxidoreductases/chemistry , Polymorphism, Single Nucleotide , Protein Conformation , Protein Domains
6.
J Biomol Struct Dyn ; 38(8): 2440-2454, 2020 May.
Article in English | MEDLINE | ID: mdl-31241419

ABSTRACT

The seryl nucleoside moiety (SB-217452) of the Trojan horse antibiotic albomycin exhibits broad spectrum antibiotic activity against various bacterial pathogens by targeting seryl tRNA synthetase (SerRS). The aim of the present study is to understand how the SB-217452 inhibits SerRSs of different species. First, the binding efficacy of SB-217452 in the dimeric SerRS from Thermus thermophilus (TtSerRS) in complex with tRNASer is compared with the binding of seryl adenylate (Ser-AMP). Multiple reasons for inhibition action of SB-217452 are revealed. In the next part, we have compared the binding event of SB-217452 in SerRS from Staphylococcus aureus (SaSerRS) and from Streptomyces sp. (SpSerRS1). First, quantum mechanical study (AIM analysis) shows that the network of interaction is stronger in SaSerRS:tRNA complex compared to the SpSerRS1:tRNA complex. This conclusion is in fair agreement with the observed IC50 values which show that the binding free energy of SB-217452 in the active site of SaSerRS is more favorable compared to that in SpSerRS1. The interactions of antibiotic with ß sheets contribute to the differences in the binding behavior. Secondly, the classical simulation results corroborate the results of AIM analysis. Finally, metadynamics calculation of the free energy surface of the conformational change of the SB-217452 shows that the antibiotic binds in a unique catalytically non competent organization in SaSerRS:tRNA. In contrast, the antibiotic can bind in the active site of SpSerRS1:tRNA complex with multiple catalytically incompetent conformations. The present study provides a comprehensive molecular perspective of the inhibition mechanism of the antibiotic.Communicated by Ramaswamy H. Sarma.


Subject(s)
Serine-tRNA Ligase , Anti-Bacterial Agents/pharmacology , Ferrichrome/analogs & derivatives , Nucleosides , Pyrimidinones , Thiophenes
7.
J Biomol Struct Dyn ; 37(2): 336-358, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29320932

ABSTRACT

Lacunae of understanding exist concerning the active site organization during the charging step of the aminoacylation reaction. We present here a molecular dynamics simulation study of the dynamics of the active site organization during charging step of subclass IIa dimeric SerRS from Thermus thermophilus (ttSerRS) bound with tttRNASer and dimeric ThrRS from Escherichia coli (ecThrRS) bound with ectRNAThr. The interactions between the catalytically important loops and tRNA contribute to the change in dynamics of tRNA in free and bound states, respectively. These interactions help in the development of catalytically effective organization of the active site. The A76 end of the tttRNASer exhibits fast dynamics in free State, which is significantly slowed down within the active site bound with adenylate. The loops change their conformation via multimodal dynamics (a slow diffusive mode of nanosecond time scale and fast librational mode of dynamics in picosecond time scale). The active site residues of the motif 2 loop approach the proximal bases of tRNA and adenylate by slow diffusive motion (in nanosecond time scale) and make conformational changes of the respective side chains via ultrafast librational motion to develop precise hydrogen bond geometry. Presence of bound Mg2+ ions around tRNA and dynamically slow bound water are other common features of both aaRSs. The presence of dynamically rigid Zinc ion coordination sphere and bipartite mode of recognition of ectRNAThr are observed.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , RNA, Transfer/chemistry , Serine-tRNA Ligase/chemistry , Threonine-tRNA Ligase/chemistry , Amino Acids/chemistry , Binding Sites , Catalytic Domain , Hydrogen Bonding , Molecular Conformation , Protein Binding
8.
J Biomol Struct Dyn ; 36(4): 878-892, 2018 03.
Article in English | MEDLINE | ID: mdl-28317434

ABSTRACT

Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.


Subject(s)
Amino Acids/chemistry , Histidine-tRNA Ligase/chemistry , Serine-tRNA Ligase/chemistry , Transfer RNA Aminoacylation , Amino Acid Sequence , Binding Sites , Catalysis , Catalytic Domain , Molecular Dynamics Simulation , Protein Conformation , Thermus thermophilus/chemistry , Thermus thermophilus/enzymology
9.
J Phys Chem B ; 119(34): 10832-48, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-25794108

ABSTRACT

Aminoacyl tRNA synthetases (aaRSs) carry out the first step of protein biosynthesis. Several aaRSs are multimeric, and coordination between the dynamics of active sites present in each monomer is a prerequisite for the fast and accurate aminoacylation. However, important lacunae of understanding exist concerning the conformational dynamics of multimeric aaRSs. Questions remained unanswered pertaining to the dynamics of the active site. Little is known concerning the conformational dynamics of the active sites in response to the substrate binding, reorganization of the catalytic residues around reactants, time-dependent changes at the reaction center, which are essential for facilitating the nucleophilic attack, and interactions at the interface of neighboring monomers. In the present work, we carried out all-atom molecular dynamics simulation of dimeric (mk)SerRS from Methanopyrus kandleri bound with tRNA using an explicit solvent system. Two dimeric states of seryl tRNA synthetase (open, substrate bound, and adenylate bound) and two monomeric states (open and substrate bound) are simulated with bound tRNA. The aim is to understand the conformational dynamics of (mk)SerRS during its reaction cycle. While the present results provide a clear dynamical perspective of the active sites of (mk)SerRS, they corroborate with the results from the time-averaged experimental data such as crystallographic and mutation analysis of methanogenic SerRS from M. kandleri and M. barkeri. It is observed from the present simulation that the motif 2 loop gates the active site and its Glu351 and Arg360 stabilizes ATP in a bent state favorable for nucleophilic attack. The flexibility of the walls of the active site gradually reduces near reaction center, which is a more organized region compared to the lid region. The motif 2 loop anchors Ser and ATP using Arg349 in a hydrogen bonded geometry crucial for nucleophilic attack and favorably influences the electrostatic potential at the reaction center. Synchronously, Arg366 of the ß sheet at the base holds the syn oxygen of the attacking carboxylic group so that the attack by the anti oxygen is feasible. This residue also contributes to the reduction of the unfavorable electrostatic potential at the reaction center. Present simulation clearly shows the catalytic role of the residues at reaction center. A precise and stable geometry of hydrogen bonded network develops within the active site, which is essential for the development of an optimum transition state geometry. All loops move away from the platform of active site in the open or adenylate bound state and the network of hydrogen bond disappears. The serine binding site is most rigid among all three subsites. The Ser is held here in a highly organized geometry bound by Zn(2+) and Cys residues. Present simulation further suggests that the helix-turn-helix motif connecting the monomers might have important role in coordinating the functional dynamics of the two active sites. The N-terminal domain is involved in long-range electrostatic interaction and specific hydrogen bond interaction (both direct and water mediated) with tRNA. Overall conformational fluctuation is less in the N terminal compared to the catalytic domain due to the presence of a motif 2 loop, loop f, and serine ordering loop, which change conformation in the later domain during the reaction cycle. The dynamic perspective of the active site of (mk)SerRS with the mobile loop acting as the gate and dynamically silent ß sheets performing as the base has similarity with the perception of the active site in various other enzymes.


Subject(s)
Euryarchaeota/enzymology , Serine-tRNA Ligase/metabolism , Binding Sites , Dimerization , History, 20th Century , History, 21st Century , Models, Theoretical , Serine-tRNA Ligase/chemistry
10.
J Nanosci Nanotechnol ; 14(3): 2280-98, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24745224

ABSTRACT

The present work is aimed at understanding the origin of the difference in the molecular organization of the active site nanospaces of the class I and class II aminoacyl tRNA synthetases (aaRSs) which are tunnel-like structures. The active site encloses the cognate amino acid (AA) and the adenosine triphosphate (ATP) to carry out aminoacylation reaction. Comparison of the structures of the active site of the class I and class II (aaRSs) shows that the nanodimensional tunnels are curved in opposite directions in the two classes. We investigated the origin of this difference using quantum mechanical computation of electrostatic potential (ESP) of substrates, surrounding residues and ions, using Atoms in Molecule (AIM) Theory and charge population analysis. We show that the difference is principally due to the variation in the spatial charge distribution of ATP in the two classes which correspond to extended and bent conformations of ATP. The present computation shows that the most feasible pathway for nucleophilic attack to alphaP is oppositely directed for class I and class II aaRSs. The available crystal structures show that the cognate AA is indeed located along the channel favorable for nucleophilic attack as predicted by the ESP analysis. It is also shown that the direction of the channel changes its orientation when the orientation of ATP is changed from extended to a bent like structure. We further used the AIM theory to confirm the direction of the approach of AA in each case and the results corroborate the results from the ESP analysis. The opposite curvatures of the active site nanospaces in class I and class II aaRSs are related with the influence of the charge distributions of the extended and bent conformations of ATP, respectively. The results of the computation of electrostatic potential by successive addition of active site residues show that their roles on the reaction are similar in both classes despite the difference in the organization of the active sites of class I and class II aaRSs. The difference in mechanism in two classes as pointed out in recent study (S. Dutta Banik and N. Nandi, J. Biomol. Struct. Dyn. 30, 701 (2012)) is related with the fact that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs as explained in the present work. The charge population difference between the reacting centers (which are the alphaP atom of ATP (q(p)) and the attacking oxygen atom of carboxylic acid group (q(o)), respectively) denoted by delta(q), is a measure of the propensity of nucleophilic attack. The population analysis of the substrate AA shows that a non-negligible difference exists between the attacking oxygens of AA in class I (syn) and in class II (anti) which is one reason for the lower value of delta(q) in class II relative to class I. The population analysis of the AA, ATP, Mg+2 ions and active site residues shows that the difference in delta(q) values of the two classes is substantially reduced. When ions and residues are considered. Thus, the bent state of ATP, Mg+2 ions and active site residues complements it cognate AA to carry out the nucleophilic reaction in class I as efficiently as occurs in class I (with the extended state of ATP, single Mg+2 ion and active site residues). This could be one reason for the two different conformations of ATP in the two classes. The mutual arrangements of AA and ATP in each aaRS are guided by the spatial charge distribution of ATP (extended and bent). The present work shows that the construction of nanospace complements the arrangement of the substrate (AA and ATP).


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Catalytic Domain , Adenosine Triphosphate/chemistry , Amino Acids/chemistry , Binding Sites , Carboxylic Acids/chemistry , Crystallization , Crystallography, X-Ray , Ions , Magnesium/chemistry , Models, Statistical , Oxygen/chemistry , Protein Conformation , Static Electricity , Substrate Specificity
11.
Adv Colloid Interface Sci ; 208: 110-20, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24725645

ABSTRACT

Bilayers and monolayers are excellent models of biological membranes. The constituents of the biological membranes such as lipids, cholesterols and proteins are chiral. Chiral molecules are abundant in nature (protein, nucleic acid and lipid). It is obvious that relationship between chirality and morphology (as well as function) of biological membrane is of interest for its fundamental importance and has technological implication regarding various membrane functions. The recent years have witnessed that a number of experimental studies in biomimetic systems have shown fascinating morphologies where chirality of the constituent molecule has decisive influence. Significant progress is made towards the understanding of these systems from the theoretical and computational studies. Helfrich's concept of intrinsic force arising from chirality is a milestone in understanding the biomimetic system such as bilayer and the related concepts, further progresses in molecular understanding made in recent years and experimental studies revealing the influence of chirality on morphology are the focus of the present review. Helfrich's concept of intrinsic force arising due to chirality is useful in understanding two-dimensional bilayers and one-dimensional monolayers and related mimetic systems. Various experimental techniques are used, which can probe the molecular architecture of these mimetic systems at different length scales and both macroscopic (thermodynamic) as well as microscopic (molecular) theories are developed. These studies are aimed to understand the role of chirality in the molecular interaction when the corresponding molecule is present in an aggregate. When one looks into the variety of morphologies exhibited by three-dimensional bilayer and two-dimensional monolayer, the later types of systems are more exotic in the sense that they show more diversity and interesting chiral discrimination. Helfrich's concept of intrinsic force may be considered useful in both cases. The intrinsic force due to chirality is the decisive factor in determining morphology which is explained by molecular approaches. Finally, biological and technological implications of such morphological variations are briefly mentioned.


Subject(s)
Biophysics/methods , Membranes, Artificial , Models, Biological , Biophysical Phenomena , Biophysics/trends , Lipid Bilayers/chemistry , Surface Properties , Unilamellar Liposomes/chemistry
12.
Top Curr Chem ; 333: 255-305, 2013.
Article in English | MEDLINE | ID: mdl-23019095

ABSTRACT

Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.


Subject(s)
Protein Biosynthesis , Stereoisomerism , Evolution, Molecular
13.
J Biomol Struct Dyn ; 30(6): 701-15, 2012.
Article in English | MEDLINE | ID: mdl-22731388

ABSTRACT

In the present work we report, for the first time, a novel difference in the molecular mechanism of the activation step of aminoacylation reaction between the class I and class II aminoacyl tRNA synthetases (aaRSs). The observed difference is in the mode of nucleophilic attack by the oxygen atom of the carboxylic group of the substrate amino acid (AA) to the αP atom of adenosine triphosphate (ATP). The syn oxygen atom of the carboxylic group attacks the α-phosphorous atom (αP) of ATP in all class I aaRSs (except TrpRS) investigated, while the anti oxygen atom attacks in the case of class II aaRSs. The class I aaRSs investigated are GluRS, GlnRS, TyrRS, TrpRS, LeuRS, ValRS, IleRS, CysRS, and MetRS and class II aaRSs investigated are HisRS, LysRS, ProRS, AspRS, AsnRS, AlaRS, GlyRS, PheRS, and ThrRS. The variation of the electron density at bond critical points as a function of the conformation of the attacking oxygen atom measured by the dihedral angle ψ (C(α)-C') conclusively proves this. The result shows that the strength of the interaction of syn oxygen and αP is stronger than the interaction with the anti oxygen for class I aaRSs. This indicates that the syn oxygen is the most probable candidate for the nucleophilic attack in class I aaRSs. The result is further supported by the computation of the variation of the nonbonded interaction energies between αP atom and anti oxygen as well as syn oxygen in class I and II aaRSs, respectively. The difference in mechanism is explained based on the analysis of the electrostatic potential of the AA and ATP which shows that the relative arrangement of the ATP with respect to the AA is opposite in class I and class II aaRSs, which is correlated with the organization of the active site in respective aaRSs. A comparative study of the reaction mechanisms of the activation step in a class I aaRS (Glutaminyl tRNA synthetase) and in a class II aaRS (Histidyl tRNA synthetase) is carried out by the transition state analysis. The atoms in molecule analysis of the interaction between active site residues or ions and substrates are carried out in the reactant state and the transition state. The result shows that the observed novel difference in the mechanism is correlated with the organizations of the active sites of the respective aaRSs. The result has implication in understanding the experimentally observed different modes of tRNA binding in the two classes of aaRSs.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Histidine-tRNA Ligase/chemistry , Models, Molecular , Adenosine Triphosphate/chemistry , Algorithms , Amino Acid Motifs , Catalytic Domain , Computer Simulation , Protein Binding , RNA, Transfer, Gln/chemistry , RNA, Transfer, His/chemistry , Surface Properties , Thermodynamics
14.
J Phys Chem B ; 116(15): 4693-701, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22443160

ABSTRACT

Photophysics of the nonconjugated vinyl polymer poly(N-vinylcarbazole) (PNVC) has been explored in the presence of coumarin 153 (C153) exploiting steady state and time-resolved fluorometric techniques. Dual emission from the two distinct excimers of PNVC adds importance to the study and makes it interesting. The study substantiates the occurrence of Förster resonance energy transfer (FRET) from PNVC to C153. The differential involvement of the two excimers in the energy transfer process has been established. Considering the fact that FRET is a long distance dipole induced phenomenon, this differential effect has been rationalized from a difference in the dipole moments of the two excimers. Determination of the quenching constants reveals an order of magnitude more quenching of the high energy excimer than the low energy one in the presence of the quencher C153.

15.
J Nanosci Nanotechnol ; 9(1): 77-89, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19441281

ABSTRACT

In the present work, we presented an analysis of the unusual recognition specificity exhibited by marked difference in the binding behavior of dipeptide with amphiphilic head group when subtle relative change of N-terminal and C-terminal of the dipeptide are made. Recently, in a series of detailed experiments, binding of aqueous dipeptides, GlyX and X/Gly (X = Leu, Phe, Pro, Ala; X/ = Leu, Phe) with dialkyl oligoglycyl amphiphiles is studied [X. Cha, K. Ariga, M. Onda, and T. Kunitake, J. Am. Chem. Soc. 117, 11833 (1995)]. It is observed that GlyX are specifically bound to 2C18BGly2NH2 while X/Gly are insignificantly bound. We first studied the conformational energy variation of GlyPhe, PheGly and model of 2C18BGly2NH2 amphiphile using semi-empirical and ab-initio methods in vacuum. Using the individual energy optimized monomer structure of amphiphile and peptide, we studied the binding energy of optimized GlyPhe: amphiphile pair and PheGly: amphiphile pair structures at 1:1 and 1:2 ratio at the same level of theory using a population of structures. Binding of GlyPhe is favorable over the binding of PheGly at various levels of theory (semi-empirical and ab-initio). It is noted that the hydrogen bonding pattern in the GlyPhe binding is more effective than that in the PheGly binding. In the population of low energy structures, PheGly: amphiphile structures have more exposed area around the hydrophobic Phe group than the GlyPhe: amphiphile structures. Relatively more PheGly: amphiphile structures have intermolecular orientation unsuitable to contribute to the population of head group structures relevant in aqueous interface. Summarizing, significantly better binding capacity of GlyPhe over the PheGly with amphiphile, is due to the difference in hydrogen bonding interaction pattern, hydrophobic effect and possible orientations of the amphiphile and peptide at interface, relevant to the condensed phase monolayer structure. All the three factors cooperatively lead to favorable recognition of GlyPhe over PheGly as observed in experiment. A calculation of the ratio of the amphiphile-peptide bound complex to the initial concentration of the amphiphile indicates that the diffusional process at the peptide interfaces could be significantly influenced by hydrogen bonding.

16.
J Phys Chem B ; 112(30): 9187-95, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-18610967

ABSTRACT

We present a theoretical analysis of the role of the natural chirality of the sugar ring ( D-enantiomeric form) in the peptide synthesis reaction in ribosome. The study is based on a model from the crystal structure of the ribosomal subunit of Haloarcula marismortui using hybrid quantum mechanical-molecular mechanical method. The result indicates that the natural heterochiral sugar-amino acid combination ( D: L) is most favorable for the formation of the peptide bond within the structure of peptidyl transferase center (PTC). Other possible combinations of unnatural chiral form of the sugar-amino acid pair are unfavorable to perform the reaction within the PTC. The presence of the sugar ring has favorable influence on the rotatory path. The chirality of the 2' carbon of the sugar ring is vital for the peptide synthesis. Alteration of the stereochemistry or removal of chirality at the 2' center makes the rate as several orders slower in magnitude. This is in agreement with the recent experimental result that the replacement of the 2' OH by H or F reduces the rate by several orders of magnitude. Two different mechanisms for the catalytic effect of the stereochemistry of 2' OH are investigated. In one mechanism, the 2' OH is involved in proton shuttle, and in the second mechanism, the OH group acts as an anchoring group. The transition state barriers of both mechanisms are found to be comparable. The natural chirality of the 2' center helps lowering the transition state barrier height of the reaction substantially compared with the cases where the 2' center is made achiral or with altered chirality. Thus, the stereochemistry of the 2' center has a major role in synthesis. Few surrounding residues like U2620, A2486, G2618, and C2487 have favorable influence on rotatory path, while the residues like U2541, C2104, C2105, A2485, C2542, C2608, U2619, and A2637 have little influence. The present study shows that the natural chirality of the sugar ring and amino acid makes a perfect heteropair within the PTC to carry out peptide synthesis with high efficiency.


Subject(s)
Carbohydrates/chemistry , Haloarcula marismortui/metabolism , Peptide Biosynthesis , Peptides/chemistry , Peptides/metabolism , Ribosomes/metabolism , Amino Acids/chemistry , Haloarcula marismortui/enzymology , Models, Molecular , Peptidyl Transferases/metabolism , Protein Conformation , Quantum Theory , Stereoisomerism
17.
J Phys Chem B ; 111(33): 9999-10004, 2007 Aug 23.
Article in English | MEDLINE | ID: mdl-17672499

ABSTRACT

Experimental studies have shown that peptide synthesis in ribosome exhibits a homochiral preference. We present, for the first time, an analysis of the origin of the phenomenon using hybrid quantum chemical studies based on a model of peptidyl transferase center from the crystal structure of the ribosomal part of Haloarcula marismortui. The study quantitatively shows that the observed homochiral preference is due to the difference in the nonbonded interaction between amino acids at the A- and P-terminals as well as due to the difference in interaction with the U2620 residue. A major part of the discrimination comes from the variation of nonbonded interaction of rotating A-terminal during the approach of the former toward the P-terminal. The difference indicates that, during the rotatory motion between A- and P-terminals for the proximal positioning of the reactant for reaction to occur, the interaction for a L-L pair is far less repulsive compared to the same process for a D-L pair. The activation barriers for L-L and D-L pairs of the neutral state of phenylalanine leading to corresponding dipeptides are also compared. The corresponding difference in rate constants is 40-fold. The study provides an understanding of how preferred addition of L-L pairs of amino acids rather than D-L pairs leads to retention of homochirality in peptides.


Subject(s)
Haloarcula/metabolism , Peptides/metabolism , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Ribosomes/metabolism , Binding Sites , Crystallography, X-Ray , Models, Molecular , Phenylalanine/chemistry , Quantum Theory
18.
Acc Chem Res ; 40(5): 351-60, 2007 May.
Article in English | MEDLINE | ID: mdl-17441680

ABSTRACT

In recent experimental studies, a number of morphological features have been revealed on amphiphilic assemblies that need consideration of the molecular chiral structure and the molecular polarity. Molecular chirality and polarity influence the intermolecular energy profile as a function of the distance and orientation between neighboring molecules in the condensed-phase aggregates of mono- and bilayers. After the experimental information is summarized, related microscopic theoretical works are presented. The molecular theory shows that the mesoscopic chiral shape of the condensed phase can be predicted from the molecular chiral structure studying the intermolecular energy profile. The theoretical insights have implications for related biological systems.


Subject(s)
Lipid Bilayers/chemistry , Membranes, Artificial , Models, Theoretical , Surface-Active Agents/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Glycerol/chemistry , Molecular Conformation , Particle Size , Quantum Theory , Surface Properties , Thermodynamics
19.
J Phys Chem B ; 110(17): 8840-9, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16640443

ABSTRACT

In the present work, we compare the intermolecular energy surfaces of the alanine molecule in its neutral and zwitterionic state using ab initio theory (HF/6-311++G) as a function of mutual orientation. Starting from the optimized structures of the nonbonded homochiral (l-l) and heterochiral (d-l) pairs of molecules, the energy surfaces are studied with rigid geometry by varying the distance and orientation. The potential energy surfaces of the l-l and d-l pairs are found to be dissimilar and reflect the underlying chirality of the homochiral pair and racemic nature of the heterochiral pair. The intermolecular energy surface of the l-l pair is more favorable than the corresponding energy surface of the d-l pair. The study, for the first time, reveals clear homochiral preference without use of parameters, which was unobserved in previous detailed simulations but predicted by theory. The electrostatic interaction further augments the chiral discrimination. The basis set superposition error (BSSE) corrected results show enhanced discrimination. Use of higher-level Møller-Plesset perturbation theory (MP2) and further BSSE correction do not change the conclusions made at the Hartree-Fock (HF) level. The major conclusions based on HF and MP2 level calculations remain unaltered when the calculations of the potential energy surfaces for the neutral and zwitterionic pairs are repeated using the density functional theory (DFT) (B3LYP/6-311++G). The observed orientation dependence has significance in the biological chiral recognition as well as peptide synthesis at the peptidyl transferase center where the amino terminal and peptidyl terminal undergo mutual rotatory motion.


Subject(s)
Amino Acids/chemistry , Thermodynamics , Molecular Conformation , Quantum Theory , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...