Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(19): 5112-5119, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38709179

ABSTRACT

Tungsten disulfide (WS2), a promising electrocatalyst made from readily available materials, demonstrates significant effectiveness in the hydrogen-evolution reaction (HER). The study conducts a thorough investigation using various analytical methods such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and in situ Raman spectroscopy. These techniques have uncovered changes in the WS2 particle structure during HER. Through employing EPR, XAS, and in situ Raman spectroscopy, the research reveals structural and chemical transformations. This includes the formation of novel W species and signs of W-O bond formation. Moreover, significant changes in the morphology of the particles were observed. These findings offer enhanced insights into the mechanisms of WS2 under HER conditions, highlighting its catalytic performance and durability.

2.
J Phys Chem Lett ; 15(13): 3591-3602, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38527269

ABSTRACT

This study focuses on the oxygen-evolution reaction (OER) activity comparison between two forms of NiFe (hydr)oxides: compound 1, where Fe ions are applied on the surface of nickel (hydr)oxide, and compound 2, with Fe ions incorporated into the structural matrix of nickel (hydr)oxide. The observed exponential link between Coulombic energy and the total charge of the system points to a direct proportionality between the potential and the concentration of oxidized nickel ions (e.g., V ∝ [oxidized Ni]), diverging from the logarithmic relationship outlined in the Nernst equation or its modifications, which is not evident in this case. Initial visible spectroscopy indicates a notable trend toward oxidation. As, during the oxidation, more Ni is oxidized, a repulsion effect develops, diminishing the likelihood of further oxidation, and a distinct linear correlation emerges between the quantity of oxidized Ni(II) and the applied potentials.

3.
Langmuir ; 39(47): 16881-16891, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37970729

ABSTRACT

The oxygen-evolution reaction (OER) is a bottleneck in water splitting, which is a critical process for energy storage. In this study, the electrochemistry of Pb in the absence or presence of K2FeO4, as a soluble Fe source, is examined at pH ≈ 13. Our findings indicate that Pb exhibits limited catalytic activity for the OER under alkaline conditions. However, upon the addition of K2FeO4 to the electrolyte, a significant enhancement in the OER activity is observed in the presence of Pb. A notable observation in this study is the formation of stable Fe(IV) species following the OER during chronoamperometry experiments conducted in an alkaline solution. In addition to in situ Raman and visible spectroscopies, the operated electrodes have been characterized by high-resolution transmission electron microscopy, scanning electron microscopy, electron spin resonance spectroscopy, X-ray diffraction, electrochemical methods, electron paramagnetic resonance, and X-ray absorption spectroscopy. Through our experimental investigations, it is consistently observed that the presence of Fe ions on the surface of Pb/PbOx serves as an effective catalyst for the OER. However, it is important to note that this heightened OER activity is only temporary due to the low adhesion of Fe ions on the surface of Pb/PbOx.

4.
Inorg Chem ; 62(38): 15766-15776, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37700523

ABSTRACT

Large-scale solar-driven water splitting is a way to store energy, but it requires the development of practical and durable oxygen evolution reaction (OER) catalysts. The present paper aims to investigate the mechanism of the OER, local pH, high-valent metal ions, limitations, conversions, and details during the OER in the presence of FeNi foam using in situ surface-enhanced Raman spectroscopy. This research also explores the use of in situ surface-enhanced Raman spectroscopy for detecting species on foam surfaces during the OER. The acidic media around the electrode not only limit the process but also affect the phosphate ion protonation and overall catalysis effectiveness. The study proposes that FeNi hydroxides serve as true catalysts for OER under neutral conditions, rather than FeNi phosphates. However, phosphate species remain crucial for proton transfer and water molecule adsorption. Changes observed in pH at the open-circuit potential suggest new insights concerning the coordination of Ni(II) to phosphate ions under certain conditions. By extrapolating the Tafel plot, the overpotential for the onset of OER was determined to be 470 mV. Furthermore, the overpotentials for current densities of 1 and 5 mA/cm2 were 590 and 790 mV, respectively. These findings offer valuable insights into the advancement of the OER catalysts and our understanding of the underlying mechanism for efficient water splitting; both are crucial elements for the purpose of energy storage.

5.
Langmuir ; 39(33): 11807-11818, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37556847

ABSTRACT

An efficient and durable oxygen evolution reaction (OER) catalyst is necessary for the water-splitting process toward energy conversion. The OER through water oxidation reactions could provide electrons for H2O, CO2, and N2 reduction and produce valuable compounds. Herein, the FeNi (1:1 Ni/Fe) alloy as foam, after anodizing at 50 V in a two-electrode system in KOH solution (1.0 M), was characterized by Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-angle annular dark-field imaging (HAADF)-scanning transmission electron microscopy (STEM) and used as an efficient and durable OER electrocatalyst in KOH solution (1.0 M). The overpotential for the onset of the OER based on extrapolation of the Tafel plot was 225 mV. The overpotentials for the current densities of 10 and 30 mA/cm2 are observed at 270 and 290 mV, respectively. In addition, a low Tafel slope is observed, 38.0 mV per decade, for the OER. To investigate the mechanism of the OER, in situ surface-enhanced Raman spectroscopy was used to detect FeNi hydroxide and characteristic peaks of H2O. Impurities in KOH can adsorb onto the electrode surface during the OER. Peaks corresponding to Ni(III) (hydr)oxide and FeO42- can be detected during the OER, but high-valent FeNi (hydr)oxides are unstable and reduce under the open circle potential. Metal hydroxide transformations during the OER and anion adsorption should be carefully considered. In addition, Fe3O4 may convert to γ-Fe2O3 during the OER. This study aims to offer logical perspectives on the dynamic changes that occur during the OER under alkaline conditions in an anodized FeNi alloy. These changes encompass variations in morphology, surface oxidation, the generation of high-valent species, and phase conversion during the OER.

6.
Inorg Chem ; 62(30): 12157-12165, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37462411

ABSTRACT

Cerium(IV) ammonium nitrate (CAN) has been extensively used as a sacrificial oxidant to study water-oxidation catalysts (WOCs). Although nickel hydroxide has been extensively investigated as WOCs, the water-oxidation reaction (WOR) and mechanistic studies in the presence of CAN and nickel hydroxide were rarely performed. Herein, using in situ Raman spectroscopy, in situ X-ray absorption spectroscopy, and in situ electron paramagnetic resonance spectroscopy, WOR in the presence of CAN and ß-Ni(OH)2 was investigated. The proposed WOR mechanism involves the oxidation of ß-Ni(OH)2 by CAN, leading to the formation of γ-NiO(OH). γ-NiO(OH), in the presence of acidic conditions, evolves oxygen and is reduced to Ni(II). In other words, the role of ß-Ni(OH)2 is the storage of four oxidizing equivalents by CAN, and then a four-electron reaction could result in a WOR with low activation energy. ß-Ni(OH)2 in CAN at concentrations of 0.10 M shows WOR with a maximum turnover frequency and a turnover number (for 1000 s) of 5.5 × 10-5/s and 2.0 × 10-2 mol (O2)/mol(Ni), respectively. In contrast to ß-Ni(OH)2, Ni(OH2)62+ (aq) could not be oxidized to γ-NiO(OH). Indeed, Ni(OH2)62+ (aq) is the decomposition product of ß-Ni(OH)2/CAN.

7.
Dalton Trans ; 52(32): 11176-11186, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37519100

ABSTRACT

Solar fuel production by photosynthetic systems strongly relies on developing efficient and stable oxygen-evolution catalysts (OECs). Cerium(IV) ammonium nitrate (CAN) has been the most commonly used sacrificial oxidant to investigate OECs. Although many metal oxides have been extensively investigated as OECs in the presence of CAN, mechanistic studies were rarely reported. Herein, first, Fe(III) (hydr)oxide (FeOxHy) was prepared by the reaction of Fe(ClO4)3 and KOH solution and characterized by some methods. Then, changes in Fe oxide in the presence of CAN during the OER were tracked using in situ Raman spectroscopy, in situ X-ray absorption spectroscopy, in situ visible spectroscopy, and in situ electron paramagnetic resonance spectroscopy. FeOxHy in the presence of CAN and during the OER converted to γ-Fe2O3 and [Fe(H2O)6]3+, and a small amount of oxygen was formed. A maximum turnover frequency and turnover number of 10-6 s-1 and 1.3 × 10-3 mol(O2)/mol(Fe) (for half an hour) in the presence of CAN (0.20 M) and FeOxHy were observed.

8.
Langmuir ; 39(15): 5542-5553, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37029750

ABSTRACT

Recently, copper(II) complexes have been extensively investigated as oxygen-evolution reaction (OER) catalysts through a water-oxidation reaction. Herein, new findings regarding OER in the presence of a Cu(II) complex with 6,6'-dihydroxy-2,2'-bipyridine ligand are reported. Using scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, Raman spectroscopy, in situ visible microscopy, in situ visible spectroelectrochemistry, X-ray absorption spectroscopy, and electrochemistry, it is hypothesized that the film formed on the electrode's surface in the presence of this complex causes an appropriated matrix to produce Cu (hydr)oxide. The resulting Cu (hydr)oxide could be a candidate for OER catalysis. The formed film could form Cu (hydr)oxide and stabilize it. Thus, OER activity increases in the presence of this complex.

9.
Dalton Trans ; 51(32): 12170-12180, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35876690

ABSTRACT

In the context of energy storage, the oxygen-evolution reaction (OER, 2H2O → O2 + 4H+ + 4e-) through the water-oxidation reaction is a thermodynamically uphill reaction in overall water splitting. In recent years, copper(II) coordination compounds have been extensively used for the OER. However, challenges remain in finding the mechanism of the OER in the presence of these metal coordination compounds. Herein, the electrochemical OER activity is investigated in the presence of a copper(II) coordination compound at pH ≈ 7. While the investigations on finding true catalysts for the OER are focused on the working electrode, herein, for the first time, the focus is on the decomposition of copper(II) coordination compound (CuL3, L: 2,2'-bipyridine N,N'-dioxide) during the OER on the counter electrode toward the precipitation of copper(I) oxide and metallic Cu.

10.
Inorg Chem ; 61(12): 5112-5123, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35297622

ABSTRACT

Metal-organic frameworks (MOFs) are extensively investigated as catalysts in the oxygen-evolution reaction (OER). A Ni-Fe MOF with 2,5-dihydroxy terephthalate as a linker has been claimed to be among the most efficient catalysts for the oxygen-evolution reaction (OER) under alkaline conditions. Herein, the MOF stability under the OER was reinvestigated by electrochemical methods, X-ray diffraction, X-ray absorption spectroscopy, energy-dispersive spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy, nuclear magnetic resonance, operando visible spectroscopy, electrospray ionization mass spectroscopy, and Raman spectroscopy. The peaks corresponding to the carboxylate group are observed at 1420 and 1520 cm-1 using Raman spectroscopy. The peaks disappear after the reaction, suggesting the removal of the carboxylate group. A drop in carbon content but growth in oxygen content after the OER was detected by energy-dispersive spectra. This shows that after the OER, the surface of MOF is oxidized. SEM images also show deep restructures in the surface morphology of this Ni-Fe MOF after the OER. Nuclear magnetic resonance and electrospray ionization mass spectrometry show the decomposition of the linker in alkaline conditions and even in the absence of potential. These experimental data indicate that during the OER, the synthesized MOF transforms to a Fe-Ni-layered double hydroxide, and the formed metal oxide is a candidate for the OER catalysis. Generalization is not true; however, taken together, these findings suggest that the stability of Ni-Fe MOFs under harsh oxidation conditions should be reconsidered.

11.
Inorg Chem ; 61(1): 464-473, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34951771

ABSTRACT

Water splitting is a helpful way of converting renewable electricity into fuel. The oxygen evolution reaction (OER) is a slow reaction that provides low-cost electrons for water reduction reactions. Thus, finding an efficient, low-cost, stable, and environmentally friendly OER catalyst is critical for water splitting. Here, sodium cobalticarborane (1) is introduced as a promising precatalyst for forming an OER cobalt-based catalyst. The cobalt-based catalyst was characterized by several methods and is suggested to be Co(III) (hydr)oxide. Using fluorine-doped tin oxide, glassy carbon, platinum, and gold electrodes, the OER activity of the cobalt-based precatalyst was investigated. The overpotential for the onset of OER in the presence of 1 is 315 mV using fluorine-doped tin oxide electrodes. The onsets of OERs in the presence of 1 using gold, platinum, and glassy carbon electrodes in KOH solutions (1.0 M) turned out to be 275, 284, and 330 mV, respectively. The nanoparticles on the gold electrodes exhibit significant OER activity with a Tafel slope of 63.8 mV/decade and an overpotential at 541 mV for 50 mA/cm2. In the case of the glassy carbon electrodes, a Tafel slope of 109.9 mV/decade and an overpotential of 548 mV for 10 mA/cm2 is recorded for the catalyst. This paper outlines an interesting approach to synthesize cobalt oxide for OER through a slow decomposition of a precatalyst.

12.
Dalton Trans ; 51(1): 220-230, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34881752

ABSTRACT

A cobalt coordination compound with azo-ligand linkers combined with linked bisulfonate moieties has been argued to be an efficient catalyst for the oxygen-evolution reaction (OER) (H.-T. Shi, X.-X. Li, F.-H. Wu and W.-B. Yu, Dalton Trans., 2017, 46, 16321.). In the previously published report, this cobalt compound (compound 1) was believed to display a high turnover frequency (5 s-1) at η = 720 mV at pH 9. Herein, the OER in the presence of compound 1 is reinvestigated. The nanosized oxide-based particles formed after the OER in the presence of compound 1 were tracked by electrochemical methods, scanning electron microscopy (SEM), energy dispersive spectrometry (EDX), X-ray diffraction studies (XRD), (High-resolution) transmission electron microscopy ((HR)TEM), Raman spectroscopy, X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). Based on these experiments, it is proposed that a candidate for the true catalyst of the OER in the presence of compound 1 is cobalt oxide. During the OER and using chronoamperometry, the oxidation state of Co ions for the formed Co oxide is (III), but after consecutive CVs the oxidation states of Co ions for the formed Co oxide are (II) and (III). The results shed new light on the role of Co oxide nanoparticles formed in the presence of this Co coordination compound during the OER. Our experimental data also show that for the OER in the presence of a homogeneous (pre)catalyst, careful analyses to find the role of metal oxides are necessary for informed progress. The present findings also might help to find the mechanism of the OER in the presence of coordination compounds.

13.
ACS Appl Mater Interfaces ; 12(12): 14105-14118, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32118399

ABSTRACT

Designing solid-state perovskite oxide solar cells with large short circuit current (JSC) and open circuit voltage (VOC) has been a challenging problem. Epitaxial BiFeO3 (BFO) films are known to exhibit large VOC (>50 V). However, they exhibit low JSC (≪µA/cm2) under 1 Sun illumination. In this work, taking polycrystalline BiFeO3 thin films, we demonstrate that oxygen vacancies (VO) present within the lattice and at grain boundary (GB) can explicitly be controlled to achieve high JSC and VOC simultaneously. While aliovalent substitution (Ca2+ at Bi3+ site) is used to control the lattice VO, Ca and Ti cosubstitution is used to bring out only GB-VO. Fluorine-doped tin oxide (FTO)/Bi1-xCaxFe1-yTiyO3-δ/Au devices are tested for photovoltaic characteristics. Introducing VO increases the photocurrent by four orders (JSC ∼ 3 mA/cm2). On the contrary, VOC is found to be <0.5 V, as against 0.5-3 V observed for the pristine BiFeO3. Ca and Ti cosubstitution facilitate the formation of smaller crystallites, which in turn increase the GB area and thereby the GB-VO. This creates defect bands occupying the bulk band gap, as inferred from the diffused reflection spectra and band structure calculations, leading to a three-order increase in JSC. The cosubstitution, following a charge compensation mechanism, decreases the lattice VO concentration significantly to retain the ferroelectric nature with enhanced polarization. It helps to achieve VOC (3-8 V) much larger than that of BiFeO3 (0.5-3 V). It is noteworthy that as Ca substitution maintains moderate crystallite size, the lattice VO concentration dominates GB-VO concentration. Notwithstanding, both lattice and GB-VO contribute to the increase in JSC; the former weakens ferroelectricity, and as a consequence, undesirably, VOC is lowered well below 0.5 V. Using optimum JSC and VOC, we demonstrate that the efficiency ∼0.22% can be achieved in solid-state BFO solar cells under AM 1.5 one Sun illumination.

14.
J Chem Phys ; 132(23): 234104, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20572686

ABSTRACT

We present a genetic algorithm based investigation of structural fragmentation in dicationic noble gas clusters, Ar(n)(+2), Kr(n)(+2), and Xe(n)(+2), where n denotes the size of the cluster. Dications are predicted to be stable above a threshold size of the cluster when positive charges are assumed to remain localized on two noble gas atoms and the Lennard-Jones potential along with bare Coulomb and ion-induced dipole interactions are taken into account for describing the potential energy surface. Our cutoff values are close to those obtained experimentally [P. Scheier and T. D. Mark, J. Chem. Phys. 11, 3056 (1987)] and theoretically [J. G. Gay and B. J. Berne, Phys. Rev. Lett. 49, 194 (1982)]. When the charges are allowed to be equally distributed over four noble gas atoms in the cluster and the nonpolarization interaction terms are allowed to remain unchanged, our method successfully identifies the size threshold for stability as well as the nature of the channels of dissociation as function of cluster size. In Ar(n)(2+), for example, fissionlike fragmentation is predicted for n=55 while for n=43, the predicted outcome is nonfission fragmentation in complete agreement with earlier work [Golberg et al., J. Chem. Phys. 100, 8277 (1994)].

SELECTION OF CITATIONS
SEARCH DETAIL
...