Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(11): e0235760, 2020.
Article in English | MEDLINE | ID: mdl-33147212

ABSTRACT

BACKGROUND: Surgery risks increase when electricity is accessible but unreliable. During unreliable electricity events and without data on increased risk to patients, medical professionals base their decisions on anecdotal experience. Decisions should be made based on a cost-benefit analysis, but no methodology exists to quantify these risks, the associated hidden costs, nor risk charts to compare alternatives. METHODS: Two methodologies were created to quantify these hidden costs. In the first methodology through research literature and/or measurements, the authors obtained and analyzed a year's worth of hour-by-hour energy failures for four energy healthcare system (EHS) types in four regions (SolarPV in Iraq, Hydroelectric in Ghana, SolarPV+Wind in Bangladesh, and Grid+Diesel in Uganda). In the second methodology, additional patient risks were calculated according to time and duration of electricity failure and medical procedure impact type. Combining these methodologies, the cost from the Value of Statistical Lives lost divided by Energy shortage ($/kWh) is calculated for EHS type and region specifically. The authors define hidden costs due to electricity failure as VSL/E ($/kWh) and compare this to traditional electricity costs (always defined in $/kWh units), including Levelized Cost of Electricity (LCOE also in $/kWh). This is quantified into a fundamentally new energy healthcare system risk chart (EHS-Risk Chart) based on severity of event (probability of deaths) and likelihood of event (probability of electricity failure). RESULTS: VSL/E costs were found to be 10 to 10,000 times traditional electricity costs (electric utility or LCOE based). The single power source EHS types have higher risks than hybridized EHS types (especially as power loads increase over time), but all EHS types have additional risks to patients due to electricity failure (between 3 to 105 deaths per 1,000 patients). CONCLUSIONS: These electricity failure risks and hidden healthcare costs can now be calculated and charted to make medical decisions based on a risk chart instead of anecdotal experience. This risk chart connects public health and electricity failure using this adaptable, scalable, and verifiable model.


Subject(s)
Electric Power Supplies/supply & distribution , Health Care Costs , Bangladesh , Clinical Decision-Making , Cost-Benefit Analysis , Electric Power Supplies/classification , Ghana , Humans , Iraq , Uganda
2.
PLoS One ; 12(10): e0182285, 2017.
Article in English | MEDLINE | ID: mdl-29088217

ABSTRACT

BACKGROUND: Traumatic Brain Injury (TBI) is disproportionally concentrated in low- and middle-income countries (LMICs), with the odds of dying from TBI in Uganda more than 4 times higher than in high income countries (HICs). The objectives of this study are to describe the processes of care and determine risk factors predictive of poor outcomes for TBI patients presenting to Mulago National Referral Hospital (MNRH), Kampala, Uganda. METHODS: We used a prospective neurosurgical registry based on Research Electronic Data Capture (REDCap) to systematically collect variables spanning 8 categories. Univariate and multivariate analysis were conducted to determine significant predictors of mortality. RESULTS: 563 TBI patients were enrolled from 1 June- 30 November 2016. 102 patients (18%) received surgery, 29 patients (5.1%) intended for surgery failed to receive it, and 251 patients (45%) received non-operative management. Overall mortality was 9.6%, which ranged from 4.7% for mild and moderate TBI to 55% for severe TBI patients with GCS 3-5. Within each TBI severity category, mortality differed by management pathway. Variables predictive of mortality were TBI severity, more than one intracranial bleed, failure to receive surgery, high dependency unit admission, ventilator support outside of surgery, and hospital arrival delayed by more than 4 hours. CONCLUSIONS: The overall mortality rate of 9.6% in Uganda for TBI is high, and likely underestimates the true TBI mortality. Furthermore, the wide-ranging mortality (3-82%), high ICU fatality, and negative impact of care delays suggest shortcomings with the current triaging practices. Lack of surgical intervention when needed was highly predictive of mortality in TBI patients. Further research into the determinants of surgical interventions, quality of step-up care, and prolonged care delays are needed to better understand the complex interplay of variables that affect patient outcome. These insights guide the development of future interventions and resource allocation to improve patient outcomes.


Subject(s)
Brain Injuries, Traumatic/surgery , Registries , Adolescent , Adult , Brain Injuries, Traumatic/mortality , Child , Child, Preschool , Female , Hospitals , Humans , Infant , Infant, Newborn , Male , Prospective Studies , Risk Factors , Uganda/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...