Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 99(9): 4539-4548, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32867998

ABSTRACT

Salmonella is a poultry-borne pathogen that causes illness throughout the world. Consequently, it is critical to control Salmonella during the process of converting broilers to poultry meat. Sanitization of a poultry processing facility, including processing equipment, is a crucial control measure that is utilized by poultry integrators. However, prevalence of Salmonella on equipment after sanitization and its potential risk to food safety has not been evaluated thoroughly. Therefore, the objective of this study was to evaluate the persistence of Salmonella on poultry processing equipment before and following cleaning and sanitization procedure. A total of 15 locations within 6 commercial processing plants were sampled at 3 time points: (A) after processing; (B) after cleaning; and (C) after sanitization, on 3 separate visits for a total of 135 samples per plant. Salmonella-positive isolates were recovered from samples using the United States Department of Agriculture MLG 4.09 conventional method. Presumptive Salmonella colonies were subjected to biochemical tests for confirmation. Salmonella isolates recovered after sanitization were serotyped and tested for the presence of specific virulence genes. A completely randomized design with a 6 × 3 × 15 factorial arrangement was utilized to analyze the results for Salmonella prevalence between processing plants. Means were separated using Fishers protected least significant difference when P ≤ 0.05. For Salmonella prevalence between processing plants, differences (P < 0.0001) were observed in the 6 plants tested where the maximum and minimum prevalence was 29.6 and 7.4%, respectively. As expected, there was a difference (P < 0.0001) in the recovery of Salmonella because of sampling time. Salmonella prevalence at time A (36%) was significantly higher, whereas there was no difference between time B (12%) and C (9%). There was a location effect (P < 0.0001) for the prevalence of Salmonella with the head puller, picker, cropper, and scalder having a significantly higher prevalence when compared with several other locations. At sampling time C, a trend toward a difference (P = 0.0899) was observed for Salmonella prevalence between the 6 plants, whereas significant differences were observed because of location (P = 0.0031). Five prominent Salmonella enterica serovars were identified, including Kentucky, Schwarzengrund, Enteritidis, Liverpool, and Typhimurium with S. Kentucky being the most prevalent. PCR analysis of 8 Salmonella virulence genes showed that the invA, sipB, spiA, sseC, and fimA were detected in all isolates, whereas genes carried on plasmids and/or fimbriae varied remarkably among all isolates. This study established Salmonella prevalence and persistence in poultry processing facilities after antimicrobial application through sanitization procedures which could result in contamination of poultry carcasses and food safety risks because of poultry meat.


Subject(s)
Disinfection , Environmental Microbiology , Food Industry , Salmonella Infections, Animal , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Disinfection/methods , Disinfection/standards , Drug Resistance, Multiple, Bacterial , Food Industry/instrumentation , Food Industry/statistics & numerical data , Poultry , Salmonella Infections, Animal/epidemiology , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , United States
2.
Food Chem ; 312: 126040, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31896457

ABSTRACT

This study's objective was to investigate how legume type and processing method affected digestibility, and subsequent gut microbiota and short chain fatty acid (SCFA) formation. After autoclaving and germinating-cooking, pinto bean and soybean were subjected to in vitro digestion. The digestion residues were fractionated into soluble and insoluble fiber, and fermented by microbiota from pig feces. Results showed the in vitro digestibility was affected significantly by processing method and legume type. Autoclaving resulted in higher digestibility. The in-vitro digested bean residues caused a rapid pH decrease in the first 12 h during the fermentation with pig feces, and a significant increse in the formation of SCFAs. A positive modulation of the gut microbiota by the in-vitro digested bean residues was observed. Prevotella copri and Bacteroides vulgatus exhibited the highest relative abundance in the treatments with germinated bean's soluble residues. Phascolarctobacterium succinatutens was increased by the insoluble residues.


Subject(s)
Fabaceae , Fatty Acids, Volatile/analysis , Gastrointestinal Microbiome , Animals , Dietary Fiber/analysis , Feces/microbiology , Fermentation , Glycine max , Swine
3.
Poult Sci ; 97(3): 951-961, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29346603

ABSTRACT

Salmonella enterica serovar Heidelberg (American Type Culture Collection; ATCC 8326) was examined for the ability to adapt to the homologous stress of chlorine through exposure to increasing chlorine concentrations (25 ppm daily increments) in tryptic soy broth (TSB). The tested strain exhibited an acquired tolerance to chlorine in TSB with the tolerant cells growing in concentrations up to 400 ppm. In addition, the chlorine stressed cells displayed rugose morphology on tryptic soy agar (TSA) plates at 37°C. The minimum inhibitory concentration (MIC) of chlorine for adapted (rugose and smooth) cells was determined to be 550 ppm and 500 ppm, respectively whereas the MIC for the control was 450 ppm. The biofilm forming ability of the adapted and control cells were examined on both plastic and stainless steel surface at room temperature and 37°C. The rugose variant, in contrast to the smooth (adapted and control) showed the ability to form strong biofilms (P ≤ 0.05) on a plastic surface at room temperature and 37°C. Rugose cells compared to smooth and control attached more (P ≤ 0.05) to steel surfaces as well. The possibility of cross-adaptation was examined by exposing the adapted and control cells to different antibiotics according to the Clinical & Laboratory Standards Institute guidelines. Adapted cells exhibited reduced susceptibility to some of the antibiotics tested as compared to control. The findings of this study suggest that exposure to sublethal chlorine concentration during the sanitization procedure can result in tolerant Salmonella cells. Chlorine may confer cross-protection that aids in the survival of the tolerant population to other environmental stresses.


Subject(s)
Biofilms/drug effects , Disinfectants/pharmacology , Food Handling , Food Microbiology , Salmonella enterica/drug effects , Salmonella enterica/physiology , Sodium Hypochlorite/pharmacology , Adaptation, Physiological/drug effects , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Plastics , Stainless Steel , Stress, Physiological/drug effects
4.
Poult Sci ; 95(3): 668-75, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26706362

ABSTRACT

The present study evaluated the efficacy of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella on chicken breast fillets, as a surface and dip application. The effectiveness of phage in combination with modified atmosphere packaging (MAP) and the ability of phage preparation in reducing Salmonella on chicken breast fillets at room temperature was also evaluated. Chicken breast fillets inoculated with a cocktail of Salmonella Typhimurium, S. Heidelberg, and S. Enteritidis were treated with bacteriophage (10(9) PFU/mL) as either a dip or surface treatment. The dip-treated samples were stored at 4°C aerobically and the surface-treated samples were stored under aerobic and MAP conditions (95% CO2/5% O2) at 4°C for 7 d. Immersion of Salmonella-inoculated chicken breast fillets in bacteriophage solution reduced Salmonella (P < 0.05) by 0.7 and 0.9 log CFU/g on d 0 and d 1 of storage, respectively. Surface treatment with phage significantly (P < 0.05) reduced Salmonella by 0.8, 0.8, and 1 log CFU/g on d 0, 1, and 7 of storage, respectively, under aerobic conditions. Higher reductions in Salmonella counts were achieved on chicken breast fillets when the samples were surface treated with phage and stored under MAP conditions. The Salmonella counts were reduced by 1.2, 1.1, and 1.2 log CFU/g on d 0, 1, and 7 of storage, respectively. Bacteriophage surface application on chicken breast fillets stored at room temperature reduced the Salmonella counts by 0.8, 0.9, and 0.4 log CFU/g after 0, 4, and 8 h, respectively, compared to the untreated positive control. These findings indicate that lytic phage preparation was effective in reducing Salmonella on chicken breast fillets stored under aerobic and modified atmosphere conditions.


Subject(s)
Food Contamination/prevention & control , Food Microbiology , Food Packaging/standards , Meat/microbiology , Pectoralis Muscles/microbiology , Salmonella Phages/physiology , Salmonella enterica/virology , Animals , Chickens , Meat/analysis , Pectoralis Muscles/physiology
5.
Int J Food Microbiol ; 207: 8-15, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-25950852

ABSTRACT

The effectiveness of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella in vitro and on chicken breast fillets was examined in combination with lauric arginate (LAE) or cetylpyridinium chloride (CPC). In another experiment, a sequential spray application of this bacteriophage (phage) solution on Salmonella inoculated chicken skin after a 20s dip in chemical antimicrobials (LAE, CPC, peracetic acid, or chlorine) was also examined in reducing Salmonella counts on chicken skin. The application of phage in combination with CPC or LAE reduced S. Typhimurium, S. Heidelberg, and S. Enteritidis up to 5 log units in vitro at 4 °C. On chicken breast fillets, phage in combination with CPC or LAE resulted in significant (p<0.05) reductions of Salmonella ranging from 0.5 to 1.3 log CFU/g as compared to control up to 7 days of refrigerated storage. When phage was applied sequentially with chemical antimicrobials, all the treatments resulted in significant reductions of Salmonella. The application of chlorine (30 ppm) and PAA (400 ppm) followed by phage spray (10(9)PFU/ml) resulted in highest Salmonella reductions of 1.6-1.7 and 2.2-2.5l og CFU/cm(2), respectively. In conclusion, the surface applications of phage in combination with LAE or CPC significantly reduced Salmonella counts on chicken breast fillets. However, higher reductions in Salmonella counts were achieved on chicken skin by the sequential application of chemical antimicrobials followed by phage spray. The sequential application of chlorine, PAA, and phage can provide additional hurdles to reduce Salmonella on fresh poultry carcasses or cut up parts.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteriophages/physiology , Food Handling/methods , Food Microbiology/methods , Meat/microbiology , Salmonella/drug effects , Salmonella/virology , Animals , Arginine/analogs & derivatives , Arginine/pharmacology , Cetylpyridinium/pharmacology , Chickens , Chlorine Compounds/pharmacology , Peracetic Acid/pharmacology
6.
Food Microbiol ; 49: 134-41, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25846923

ABSTRACT

The primary objective of this study was to determine the efficacy of carvacrol in combination with modified atmosphere packaging (MAP) in reducing Salmonella on turkey breast cutlets stored at 4 °C. In experiment I, carvacrol (0.5, 1, and 2% v/v) was applied as surface treatment and samples were stored under aerobic condition or as surface and dip treatments followed by storage in an environment of 100% carbon dioxide. The findings of the experiment I revealed the synergistic activity of carvacrol with carbon dioxide in reducing Salmonella when used as dip treatment compared to the surface treatment. In experiment II, turkey breast cutlets were dip treated with carvacrol (0.25, 0.5, and 1% v/v) for 30 s and stored under MAP (95% carbon dioxide and 5% oxygen) to evaluate the efficacy against Salmonella, Campylobacter jejuni and lactic acid bacteria on turkey breast cutlets. In experiment II, the combined application of carvacrol and MAP resulted in 1.0-2.0 log CFU/g reduction (P ≤ 0.05) of both Salmonella and Campylobacter on turkey breast cutlets for 7 d storage at 4 °C. MAP alone and in combination with carvacrol reduced lactic acid bacteria (P ≤ 0.05) on cutlets stored at 4 °C for 21 d period. There was no difference (P ≤ 0.05) in meat color among treatments and controls except for an increased paleness of meat (P ≤ 0.05) observed for the 1% carvacrol treated cutlets stored under MAP after 21 d of storage. The high concentration of carbon dioxide and carvacrol treatments did not cause any alteration in meat pH (P ≤ 0.05). In conclusion, carvacrol was effective at a low concentration of 0.25% (v/v) in reducing Salmonella and C. jejuni by ∼1.0 log CFU/g when stored under MAP.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter jejuni/growth & development , Food Additives/pharmacology , Food Packaging/instrumentation , Food Preservation/methods , Meat/microbiology , Monoterpenes/pharmacology , Salmonella/growth & development , Animals , Bacteria/growth & development , Bacteria/metabolism , Cymenes , Food Contamination/analysis , Food Contamination/prevention & control , Lactic Acid/metabolism , Meat/analysis , Turkeys/microbiology
7.
Foodborne Pathog Dis ; 11(12): 981-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25405806

ABSTRACT

The foodborne illnesses associated with poultry meat due to Salmonella are a major concern in the United States. In this study, the antimicrobial efficacy of carvacrol, eugenol, thyme essential oil, and trans-cinnamaldehyde was determined against different Salmonella serotypes in vitro and on turkey breast cutlets. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of antimicrobial agents were determined using a microdilution colorimetric assay. Carvacrol was the most effective antimicrobial agent since it exhibited the lowest MIC and MBC (0.313 µL/mL, respectively) in culture media against Salmonella. Turkey breast cutlets inoculated with Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella Typhimurium were dip treated with different concentrations (0.5, 1, 2, and 5% vol/vol) of carvacrol, eugenol, thyme essential oil, and trans-cinnamaldehyde for 2 min. Samples were analyzed after 24-h storage at 4°C for recovery of Salmonella. Significant reductions of Salmonella (p≤0.05) on turkey breast cutlets were obtained with 1, 2, and 5% treatments. These compounds exhibited a concentration-dependent response on turkey breast cutlets against Salmonella. For example, 1% carvacrol resulted in 1.0 log colony-forming units (CFU)/g reduction of Salmonella whereas 5% carvacrol caused 2.6 log CFU/g reduction. Based on its efficacy in the 2-min dip study, carvacrol was selected for 30-s and 60-s dip treatments of Salmonella-inoculated turkey breast cutlets. Dipping turkey breast cutlets in 5% carvacrol for 30 s and 60 s resulted in 1.0 and 1.8 log reductions of Salmonella (p≤0.05), respectively. None of the antimicrobial agents caused any changes in the meat pH (p>0.05). In conclusion, this study revealed that plant-derived compounds such as carvacrol can reduce Salmonella on turkey breast cutlets without changing the pH of meat.


Subject(s)
Anti-Infective Agents/chemistry , Food Contamination/prevention & control , Food Preservation/methods , Meat/microbiology , Salmonella/isolation & purification , Acrolein/analogs & derivatives , Acrolein/chemistry , Animals , Cymenes , Eugenol/chemistry , Microbial Sensitivity Tests , Monoterpenes/chemistry , Oils, Volatile/chemistry , Salmonella/drug effects , Thymus Plant/chemistry , Turkeys
8.
Poult Sci ; 93(10): 2636-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25104765

ABSTRACT

The objectives of this study were to determine the antimicrobial efficacy of lauric arginate (LAE) against Campylobacter jejuni (in broth and on chicken breast fillets) and spoilage microorganisms (on chicken breast fillets). In vitro antimicrobial activity of LAE was determined by treating C. jejuni (in pure culture) with 0 (control), 50, 100, and 200 mg/L of LAE solutions at 4°C for 2 h. Inoculated chicken samples with C. jejuni were treated with 0, 200, and 400 mg/kg of LAE, packaged, and stored at 4°C for 7 d for determining the efficacy of LAE against C. jejuni on meat. Noninoculated skinless chicken breast fillet samples were treated with 0, 200, and 400 mg/kg of LAE and were used for analysis of LAE treatments on growth of mesophilic and psychrotrophic organisms on d 0, 3, 9, and 14 during storage at 4°C. Lauric arginate was highly effective against C. jejuniin vitro with no detectable survivors. Lauric arginate significantly (P ≤ 0.05) reduced C. jejuni counts on chicken breast fillets with 200 and 400 mg/kg treatments. Lauric arginate at 400 mg/L gave a maximum reduction of ~1.5 log cfu/g of C. jejuni during 7 d of storage at 4°C without any change in pH of meat. Treating chicken breast fillets with 400 mg/kg of LAE caused 2.3 log cfu/g reduction of psychrotrophs (P ≤ 0.05) compared with the control on d 0 of storage. However, no difference existed (P ≥ 0.05) in the growth of psychrotrophs on chicken breast fillets after treatment with 200 and 400 mg/kg of LAE compared with the control after 3 d. The LAE treatments had no effect (P ≥ 0.05) on growth of mesophilic organisms. The results of the study indicated that LAE is effective in reducing C. jejuni on chicken breast fillets.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arginine/analogs & derivatives , Campylobacter jejuni/drug effects , Food Microbiology , Food Preservation/methods , Meat/microbiology , Animals , Arginine/pharmacology , Chickens
SELECTION OF CITATIONS
SEARCH DETAIL
...