Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 223: 113211, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33582644

ABSTRACT

Electron diffraction through a thin patterned silicon membrane can be used to create complex spatial modulations in electron distributions. By precisely varying parameters such as crystallographic orientation and wafer thickness, the intensity of reflections in the diffraction plane can be controlled and by placing an aperture to block all but one spot, we can form an image with different parts of the patterned membrane, as is done for bright-field imaging in microscopy. The patterned electron beams can then be used to control phase and amplitude of subsequent x-ray emission, enabling novel coherent x-ray methods. The electrons themselves can also be used for femtosecond time resolved diffraction and microscopy. As a first step toward patterned beams, we demonstrate experimentally and through simulation the ability to accurately predict and control diffraction spot intensities. We simulate MeV transmission electron diffraction patterns using the multislice method for various crystallographic orientations of a single crystal Si(001) membrane near beam normal. The resulting intensity maps of the Bragg reflections are compared to experimental results obtained at the Accelerator Structure Test Area Ultrafast Electron Diffraction (ASTA UED) facility at SLAC. Furthermore, the fraction of inelastic and elastic scattering of the initial charge is estimated along with the absorption of the membrane to determine the contrast that would be seen in a patterned version of the Si(001) membrane.

2.
Phys Rev Lett ; 124(5): 054801, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083908

ABSTRACT

We present the first demonstration of THz driven bunch compression and timing stabilization of a relativistic electron beam. Quasi-single-cycle strong field THz radiation is used in a shorted parallel-plate structure to compress a few-fC beam with 2.5 MeV kinetic energy by a factor of 2.7, producing a 39 fs rms bunch length and a reduction in timing jitter by more than a factor of 2 to 31 fs rms. This THz driven technique offers a significant improvement to beam performance for applications like ultrafast electron diffraction, providing a critical step towards unprecedented timing resolution in ultrafast sciences, and other accelerator applications using femtosecond-scale electron beams.

3.
Phys Rev Lett ; 111(23): 235101, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476286

ABSTRACT

We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous -3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245-256 GHz. The widest instantaneous -3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier.


Subject(s)
Cyclotrons/instrumentation , Models, Theoretical , Optics and Photonics/instrumentation , Optics and Photonics/methods
4.
Phys Rev Lett ; 105(13): 135101, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-21230783

ABSTRACT

An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE06 mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth.


Subject(s)
Amplifiers, Electronic , Cyclotrons , Signal Processing, Computer-Assisted/instrumentation , Microwaves
SELECTION OF CITATIONS
SEARCH DETAIL