Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Trop Med Hyg ; 94(6): 1251-1258, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27022156

ABSTRACT

Serological markers, combined with spatial analysis, offer a comparatively more sensitive means by which to measure and detect foci of malaria transmission in highland areas than traditional malariometric indicators. Plasmodium falciparum parasite prevalence, seroprevalence, and seroconversion rate to P. falciparum merozoite surface protein-119 (MSP-119) were measured in a cross-sectional survey to determine differences in transmission between altitudinal strata. Clusters of P. falciparum parasite prevalence and high antibody responses to MSP-119 were detected and compared. Results show that P. falciparum prevalence and seroprevalence generally decreased with increasing altitude. However, transmission was heterogeneous with hotspots of prevalence and/or seroprevalence detected in both highland and highland fringe altitudes, including a serological hotspot at 2,200 m. Results demonstrate that seroprevalence can be used as an additional tool to identify hotspots of malaria transmission that might be difficult to detect using traditional cross-sectional parasite surveys or through vector studies. Our study findings identify ways in which malaria prevention and control can be more effectively targeted in highland or low transmission areas via serological measures. These tools will become increasingly important for countries with an elimination agenda and/or where malaria transmission is becoming patchy and focal, but receptivity to malaria transmission remains high.


Subject(s)
Malaria/transmission , Serologic Tests/methods , Adolescent , Adult , Altitude , Animals , Child , Child, Preschool , Cross-Sectional Studies , Demography , Female , Humans , Infant , Malaria/epidemiology , Male , Middle Aged , Seroepidemiologic Studies , Socioeconomic Factors , Uganda/epidemiology , Young Adult
2.
Antimicrob Agents Chemother ; 54(3): 1200-6, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20065051

ABSTRACT

The control of malaria is challenged by resistance of Plasmodium falciparum to multiple drugs. New combination regimens are now advocated for the treatment of uncomplicated falciparum malaria, but the extent of resistance to newer agents is incompletely understood. We measured the in vitro sensitivity of P. falciparum parasites cultured from children enrolled in a drug efficacy trial in Kampala, Uganda, from 2006 to 2008. Sensitivities were measured by comparing levels of histidine-rich protein-2 in parasites incubated with different concentrations of drugs with those in untreated controls. The cultured parasites exhibited a wide range of sensitivities to chloroquine (CQ); monodesethylamodiaquine (MDAQ), the major active metabolite of amodiaquine; and quinine (QN). Mean 50% inhibitory concentration (IC(50)) results were above standard cutoffs for resistance for CQ and MDAQ. Parasites were generally sensitive to dihydroartemisinin (DHA), lumefantrine (LM), and piperaquine (PQ). For CQ, MDAQ, and QN but not the other drugs, activities against individual strains were highly correlated. We also assessed known resistance-mediating polymorphisms in two putative transporters, pfcrt and pfmdr1. When parasites that were least and most sensitive to each drug were compared, the pfmdr1 86Y mutation was significantly more common in parasites that were most resistant to CQ and MDAQ, and the pfmdr1 D1246Y mutation was significantly more common in parasites that were most resistant to MDAQ and QN. In summary, we demonstrated in parasites from Kampala a range of sensitivities to older drugs; correlation of sensitivities to CQ, MDAQ, and QN; and good activity against nearly all strains for DHA, LM, and PQ.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Child , Child, Preschool , Cohort Studies , Drug Resistance/genetics , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Polymorphism, Genetic , Protozoan Proteins/genetics , Treatment Outcome , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL