Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drugs Today (Barc) ; 41(6): 369-91, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16110345

ABSTRACT

Rasagiline (N-propargyl-1R-aminoindan) is a novel, highly potent, irreversible monoamine oxidase (MAO)-B inhibitor designed for use as an antiparkinsonian drug. Unlike selegiline, rasagiline is not derived from amphetamine or metabolized to neurotoxic l-methamphetamine derivative, and it does not have sympathomimetic activity. Moreover, at selective MAO-B inhibitory dosage, it does not induce a "cheese reaction." Rasagiline is effective as monotherapy or as an adjunct to L-dopa for patients with early and late Parkinson's disease. Adverse events do not occur with greater frequency in subjects receiving rasagiline than in those on placebo. Its S-isomer, TVP1022, is more than a thousand times less potent as an MAO inhibitor. However, both drugs have neuroprotective activities in neuronal cell cultures in response to various neurotoxins, as well as in vivo (e.g., in response to global ischemia, neurotrauma, head injury, anoxia, etc.), indicating that MAO inhibition is not a prerequisite for neuroprotection. The neuroprotective activity of these drugs has been demonstrated to be associated with the propargylamine moiety, which protects mitochondrial viability and mitochondrial permeability transition pore by activating Bcl-2 and downregulating the Bax family of proteins. Rasagiline processes amyloid precursor protein (APP) into the neuroprotective-neurotrophic soluble APPalpha (sAPPalpha) by protein kinase C- and mitogen-activated protein kinase-dependent activation of alpha-secretase, and increases nerve growth factor, glial cell- derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) expression and proteins. Thus, rasagiline may induce neuroprotection, neuroplasticity and long-term potentiation. Rasagiline has therefore been chosen by the National Institutes of Health (NIH) to study its neuroprotective effects in neurodegenerative diseases. Long-term studies are required to evaluate the drug's disease-modifying prospects in Parkinson's and Alzheimer's diseases.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Antiparkinson Agents/pharmacology , Brain/metabolism , Indans/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/pharmacokinetics , Animals , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/adverse effects , Humans , Indans/administration & dosage , Indans/adverse effects , Monoamine Oxidase Inhibitors/administration & dosage , Monoamine Oxidase Inhibitors/adverse effects , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/adverse effects
2.
J Neurosci Res ; 79(1-2): 172-9, 2005.
Article in English | MEDLINE | ID: mdl-15573406

ABSTRACT

Mitochondria are involved directly in cell survival and death. The assumption has been made that drugs that protect mitochondrial viability and prevent apoptotic cascade-induced mitochondrial permeability transition pore (MPTp) opening will be cytoprotective. Rasagiline (N-propargyl-1R-aminoindan) is a novel, highly potent irreversible monoamine oxidase (MAO) B inhibitor anti-Parkinson drug. Unlike selegiline, it is not derived from amphetamine, and is not metabolized to neurotoxic L-methamphetamine derivative. In addition, it does not have sympathomimetic activity. Rasagiline is effective as monotherapy or adjunct to levodopa for patients with early and late Parkinson's disease (PD) and adverse events do not occur with greater frequency in subjects receiving rasagiline than in those on placebo. Phase III controlled studies indicate that it might have a disease-modifying effect in PD that may be related to its neuroprotective activity. Its S isomer, TVP1022, is more than 1,000 times less potent as an MAO inhibitor. Both drugs, however, have neuroprotective activity in neuronal cell cultures in response to various neurotoxins, and in vivo in response to global ischemia, neurotrauma, head injury, anoxia, etc., indicating that MAO inhibition is not a prerequisite for neuroprotection. Their neuroprotective effect has been demonstrated to be associated directly with the propargylamine moiety, which protects mitochondrial viability and MTPp by activating Bcl-2 and protein kinase C (PKC) and by downregulating the proapoptotic FAS and Bax protein families. Rasagiline and its derivatives also process amyloid precursor protein (APP) to the neuroprotective, neurotrophic, soluble APP alpha (sAPPalpha) by PKC- and MAP kinase-dependent activation of alpha-secretase. The identification of the propargylamine moiety as the neuroprotective component of rasagiline has led us to development of novel bifunctional anti-Alzheimer drugs (ladostigil) possessing cholinesterase and brain-selective MAO inhibitory activity and a similar neuroprotective mechanism of action.


Subject(s)
Indans/therapeutic use , Mitochondria/drug effects , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/therapeutic use , Pargyline/analogs & derivatives , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Genomics/methods , Humans , Indans/pharmacology , Intracellular Signaling Peptides and Proteins/pharmacology , Models, Neurological , Neuroprotective Agents/pharmacology , Pargyline/pharmacology , Pargyline/therapeutic use , Permeability/drug effects , Propylamines/pharmacology , Propylamines/therapeutic use , Protein Kinase C/metabolism , Proteomics/methods
3.
Biochem Pharmacol ; 66(8): 1635-41, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-14555244

ABSTRACT

The anti-Parkinson drug, rasagiline, a irreversible propargyl possessing monoamine oxidase B inhibitor can protect neurons in vitro and in vivo from a variety of neurotoxic insults including SIN-1, glutamate, the parkinsonism inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, N-methyl-(R)-salsolinol and including beta amyloid protein. Recent studies have shown that rasagiline rapidly modulates intracellular signaling pathways involved in cell survival and death. Specifically rasagiline activates Bcl-2, Bcl-xl, protein kinase C (PKC) and reduces Bax in a variety of cells including PC-12 and neuroblastoma human dopamine derived SH-SY5Y cells. These enzymes play key roles in cellular events including modulation of apoptotic processes, neuronal plasticity and amyloid precursor protein processing. This pharmacological action of rasagiline is also associated with the prevention of the neurotoxin induced fall in mitochondrial membrane potential, opening of mitochondria permeability transition pore, activation of proteasome-ubiquitin complex, inhibition of cytochrome c release and prevention of caspase 3 activation, similar to the actions of cyclosporin A or Bcl-2 over expression in SH-SY5Y cells. Rasagiline and its various derivatives induces PKC dependent release of soluble amyloid precursor protein alpha and which is blocked by inhibitors of alpha-secretase, PKC and MAPK-dependent signaling. Structure-activity relationship with various propargyl containing derivatives of rasagiline including propargylamine itself has shown that the above described pharmacological action of these compounds resides in the propargylamine moiety. These results have provided a new understanding into the mechanism of neuroprotective actions of rasagiline and its anti-Alzheimer drug derivatives TV3326 and TV3279, which are relevant for therapy of Parkinson's disease, Alzheimer's disease and other neurodegenerative diseases.


Subject(s)
Cysteine Endopeptidases/metabolism , Indans/pharmacology , Multienzyme Complexes/metabolism , Neuroprotective Agents/pharmacology , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Humans , Mitogen-Activated Protein Kinases/metabolism , Proteasome Endopeptidase Complex , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL