Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biofouling ; 40(2): 209-222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38500010

ABSTRACT

This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by 13Carbon nuclear magnetic resonance (13C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with Psychrobacter adeliensis and Shewanella algidipiscicola being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of Psychrobacter adeliensis biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.


Subject(s)
Biofouling , Geranium , Oils, Volatile , Psychrobacter , Biofilms , Biofouling/prevention & control , Oils, Volatile/pharmacology , Silicone Oils/pharmacology , Silicones
2.
Sci Rep ; 10(1): 1340, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992807

ABSTRACT

Microorganisms represent the most abundant biomass on the planet; however, because of several cultivation technique limitations, most of this genetic patrimony has been inaccessible. Due to the advent of metagenomic methodologies, such limitations have been overcome. Prevailing over these limitations enabled the genetic pool of non-cultivable microorganisms to be exploited for improvements in the development of biotechnological products. By utilising a metagenomic approach, we identified a new gene related to biosurfactant production and hydrocarbon degradation. Environmental DNA was extracted from soil samples collected on the banks of the Jundiaí River (Natal, Brazil), and a metagenomic library was constructed. Functional screening identified the clone 3C6, which was positive for the biosurfactant protein and revealed an open reading frame (ORF) with high similarity to sequences encoding a hypothetical protein from species of the family Halobacteriaceae. This protein was purified and exhibited biosurfactant activity. Due to these properties, this protein was named metagenomic biosurfactant protein 1 (MBSP1). In addition, E. coli RosettaTM (DE3) strain cells transformed with the MBSP1 clone showed an increase in aliphatic hydrocarbon degradation. In this study, we described a single gene encoding a protein with marked tensoactive properties that can be produced in a host cell, such as Escherichia coli, without substrate dependence. Furthermore, MBSP1 has been demonstrated as the first protein with these characteristics described in the Archaea or Bacteria domains.


Subject(s)
Bacterial Proteins/metabolism , Halobacteriaceae/metabolism , Lipid Metabolism , Oils/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Halobacteriaceae/classification , Halobacteriaceae/genetics , Hydrocarbons/metabolism , Open Reading Frames , Phylogeny , Protein Conformation , Structure-Activity Relationship , Surface-Active Agents/metabolism
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1093-1094: 134-140, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30015311

ABSTRACT

EN 14103:2003 and EN 14103:2011 were developed in order to determine fatty acid methyl ester (FAME) content of biodiesel. The internal standards (IS) of biodiesel include methyl heptadecanoate (MHD) and methyl nonadecanoate (MND), respectively. However, since these ISs are also present in bovine tallow methyl esters (BTME) or overlapping peaks, they have not been efficient. This work proposes an improved BTME determination method by using hexadecyl propanoate (HDP) as an IS. For this purpose, an analytical methodology by Gas Chromatography-Flame Ionization Detector (GC-FID) was developed and validated, where HDP demonstrated selectivity in retention time between peaks C16:1 and C18:0 for coconut and soybeans methyl esters and BTME, as well as resolution >1.5 for the BTME in split mode 30:1. Trueness in the determination of BTME content using the HDP as an IS was statistically equivalent to confidence interval of 95% for the null hypothesis statistic test, even when only 20% of the HDP was utilized in comparison with the IS concentrations defined by EN 14103:2003 and EN 14103:2011. This allowed the biodiesel analysis to be performed five times more with 1 g of HDP. Furthermore, the method developed enabled us to reduce the analysis time by 21.6%, without prejudice to the integration of peaks (C6:0 to C24:1). Regarding the repeatability and intermediate precision tests, results of RSD (%) ≤ 2% were reached. Additionally, the method developed has proved to be robust. HDP is a long-chain fatty alcohol ester absent from feedstocks used in biodiesel synthesis. It presents all of the characteristics for a good IS, ideal for application via internal standardization method, as recommended by EN 14103.


Subject(s)
Chromatography, Gas/methods , Fats/analysis , Fatty Acids/analysis , Flame Ionization/methods , Propionates/analysis , Animals , Biofuels , Cattle , Chromatography, Gas/standards , Decanoic Acids/chemistry , Fats/chemistry , Fatty Acids/chemistry , Flame Ionization/standards , Propionates/chemistry , Reference Standards , Reproducibility of Results
4.
Chemosphere ; 209: 7-16, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29908430

ABSTRACT

The oil drilling process generates large volumes of waste with inadequate treatments. Here, oil drilling waste (ODW) microbial communities demonstrate different hydrocarbon degradative abilities when exposed to distinct nutrient enrichments as revealed by comparative metagenomics. The ODW was enriched in Luria Broth (LBE) and Potato Dextrose (PDE) media to examine the structure and functional variations of microbial consortia. Two metagenomes were sequenced on Ion Torrent platform and analyzed using MG-RAST. The STAMP software was used to analyze statistically significant differences amongst different attributes of metagenomes. The microbial diversity presented in the different enrichments was distinct and heterogeneous. The metabolic pathways and enzymes were mainly related to the aerobic hydrocarbons degradation. Moreover, our results showed efficient biodegradation after 15 days of treatment for aliphatic hydrocarbons (C8-C33) and polycyclic aromatic hydrocarbons (PAHs), with a total of about 50.5% and 46.4% for LBE and 44.6% and 37.9% for PDE, respectively. The results obtained suggest the idea that the enzymatic apparatus have the potential to degrade petroleum compounds.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Metagenomics/methods , Oil and Gas Fields/chemistry , Petroleum/metabolism
5.
Microb Biotechnol ; 11(4): 759-769, 2018 07.
Article in English | MEDLINE | ID: mdl-29761667

ABSTRACT

Biosurfactant-producing bacteria were isolated from samples collected in areas contaminated with crude oil. The isolates were screened for biosurfactant production using qualitative drop-collapse test, oil-spreading and emulsification assays, and measurement of their tensoactive properties. Five isolates tested positive for in the screening experiments and displayed decrease in the surface tension below 30 mN m-1 . The biosurfactants produced by these isolates were further investigated and their molecular identification revealed that they are bacteria related to the Bacillus genus. Additionally, the biosurfactants produced were chemically characterized via UHPLC-HRMS experiments, indicating the production of surfactin homologues, including a new class of these molecules.


Subject(s)
Bacillus/isolation & purification , Bacillus/metabolism , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Petroleum/analysis , Soil Microbiology , Soil Pollutants/metabolism , Surface-Active Agents/metabolism , Bacillus/classification , Bacillus/genetics , Chromatography, High Pressure Liquid , Environmental Pollution , Mass Spectrometry , Phylogeny , Soil Pollutants/analysis , Surface Tension , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...