Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35027454

ABSTRACT

ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) AND ATXR6 are required for the deposition of H3K27me1 and for maintaining genomic stability in Arabidopsis Reduction of ATXR5/6 activity results in activation of DNA damage response genes, along with tissue-specific derepression of transposable elements (TEs), chromocenter decompaction, and genomic instability characterized by accumulation of excess DNA from heterochromatin. How loss of ATXR5/6 and H3K27me1 leads to these phenotypes remains unclear. Here we provide extensive characterization of the atxr5/6 hypomorphic mutant by comprehensively examining gene expression and epigenetic changes in the mutant. We found that the tissue-specific phenotypes of TE derepression and excessive DNA in this atxr5/6 mutant correlated with residual ATXR6 expression from the hypomorphic ATXR6 allele. However, up-regulation of DNA damage genes occurred regardless of ATXR6 levels and thus appears to be a separable process. We also isolated an atxr6-null allele which showed that ATXR5 and ATXR6 are required for female germline development. Finally, we characterize three previously reported suppressors of the hypomorphic atxr5/6 mutant and show that these rescue atxr5/6 via distinct mechanisms, two of which involve increasing H3K27me1 levels.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA Transposable Elements , Gene Expression Regulation, Plant , Genomic Instability , Methyltransferases/genetics , Alleles , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , Heterochromatin/metabolism , Histones/metabolism , Methyltransferases/metabolism , Mutation , Phenotype , Transcriptome
2.
Nat Commun ; 10(1): 3352, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350403

ABSTRACT

Deposition of the histone variant H2A.Z by the SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is important for gene regulation in eukaryotes, but the composition of the Arabidopsis SWR1-C has not been thoroughly characterized. Here, we aim to identify interacting partners of a conserved Arabidopsis SWR1 subunit ACTIN-RELATED PROTEIN 6 (ARP6). We isolate nine predicted components and identify additional interactors implicated in histone acetylation and chromatin biology. One of the interacting partners, methyl-CpG-binding domain 9 (MBD9), also strongly interacts with the Imitation SWItch (ISWI) chromatin remodeling complex. MBD9 is required for deposition of H2A.Z at a distinct subset of ARP6-dependent loci. MBD9 is preferentially bound to nucleosome-depleted regions at the 5' ends of genes containing high levels of activating histone marks. These data suggest that MBD9 is a SWR1-C interacting protein required for H2A.Z deposition at a subset of actively transcribing genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Histone Acetyltransferases/metabolism , Histones/metabolism , Microfilament Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation, Plant , Histone Acetyltransferases/genetics , Histones/genetics , Microfilament Proteins/genetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...