Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(4): e0074723, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37436171

ABSTRACT

The world's population is increasing at a rate not seen in the past. Agriculture, providing food for this increasing population, is reaching its boundaries of space and natural resources. In addition, changing legislation and increased ecological awareness are forcing agriculture to reduce its environmental impact. This entails the replacement of agrochemicals with nature-based solutions. In this regard, the search for effective biocontrol agents that protect crops from pathogens is in the spotlight. In this study, we have investigated the biocontrol activity of endophytic bacteria isolated from the medicinal plant Alkanna tinctoria Tausch. To do so, an extensive collection of bacterial strains was initially genome sequenced and in silico screened for features related to plant stimulation and biocontrol. Based on this information, a selection of bacteria was tested in vitro for antifungal activity using direct antagonism in a plate assay and in planta with a detached-leaf assay. Bacterial strains were tested individually and in combinations to assess the best-performing treatments. The results revealed that many bacteria could produce metabolites that efficiently inhibit the proliferation of several fungi, especially Fusarium graminearum. Among these, Pseudomonas sp. strain R-71838 showed a strong antifungal effect, in both dual-culture and in planta assays, making it the most promising candidate for biocontrol application. Using microbes from medicinal plants, this study highlights the opportunities of using genomic information to speed up the screening of a taxonomically diverse set of bacteria with biocontrol properties. IMPORTANCE Phytopathogenic fungi are a major threat to global food production. The most common management practice to prevent plant infections involves the intensive use of fungicides. However, with the growing awareness of the ecological and human impacts of chemicals, there is a need for alternative strategies, such as the use of bacterial biocontrol agents. Limitations in the design of bacterial biocontrol included the need for labor-intensive and time-consuming experiments to test a wide diversity of strains and the lack of reproducibility of their activity against pathogens. Here, we show that genomic information is an effective tool to select bacteria of interest quickly. Also, we highlight that the strain Pseudomonas sp. R-71838 produced a reproducible antifungal effect both in vitro and in planta. These findings build a foundation for designing a biocontrol strategy based on Pseudomonas sp. R-71838.


Subject(s)
Antifungal Agents , Plants, Medicinal , Humans , Antifungal Agents/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Reproducibility of Results , Bacteria , Fungi , Genomics , Pseudomonas/metabolism , Multigene Family , Plant Diseases/prevention & control , Plant Diseases/microbiology
2.
Syst Appl Microbiol ; 46(3): 126420, 2023 May.
Article in English | MEDLINE | ID: mdl-37031612

ABSTRACT

The genus Agrobacterium was initially described as mainly phytopathogenic strains. Nowadays, the genus includes phytopathogenic and non-phytopathogenic bacteria that are distinctive among the Rhizobiaceae family. Recently we have isolated two closely related strains, LMG 31531T and LMG 31532, from soil and plant roots, respectively. Both strains differ from previously reported species based on the genomic and phenotypic data. A. arsenijevicii KFB 330T and A. fabacearum LMG 31642T showed the highest 16S rRNA similarity (98.9 %), followed by A. nepotum LMG 26435T (98.7 %). A clear genomic feature that distinguishes LMG 31531T and LMG 31532 from other Agrobacterium species is the absence of a linear chromid. Nevertheless, typical values of the core-proteome Average Amino Acid Identity (cpAAI > 85 %) and 16S rRNA gene sequence similarity (>96 %) when compared to other members of the genus confirm the position of these two strains as part of the Agrobacterium genus. They are therefore described as Agrobacterium divergens sp. nov. Besides, our comparative genomic study and survey for clade-specific markers resulted in the discovery of conserved proteins that provide insights into the functional evolution of this genus.


Subject(s)
Agrobacterium , Fatty Acids , Sequence Analysis, DNA , Bacterial Typing Techniques , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , DNA, Bacterial/chemistry , Nucleic Acid Hybridization
3.
Front Plant Sci ; 13: 908669, 2022.
Article in English | MEDLINE | ID: mdl-36110355

ABSTRACT

Bacteria influence plant growth and development and therefore are attractive resources for applications in agriculture. However, little is known about the impact of these microorganisms on secondary metabolite (SM) production by medicinal plants. Here we assessed, for the first time, the effects of bacteria on the modulation of SM production in the medicinal plant Lithospermum officinale (Boraginaceae family) with a focus on the naphthoquinones alkannin/shikonin and their derivatives (A/Sd). The study was conducted in an in vitro cultivation system developed for that purpose, as well as in a greenhouse. Targeted and non-targeted metabolomics were performed, and expression of the gene PGT encoding for a key enzyme in the A/S biosynthesis pathway was evaluated with qPCR. Three strains, Chitinophaga sp. R-73072, Xanthomonas sp. R-73098 and Pseudomonas sp. R-71838 induced a significant increase of A/Sd in L. officinale in both systems, demonstrating the strength of our approach for screening A/Sd-inducing bacteria. The bacterial treatments altered other plant metabolites derived from the shikimate pathway as well. Our results demonstrate that bacteria influence the biosynthesis of A/Sd and interact with different metabolic pathways. This work highlights the potential of bacteria to increase the production of SM in medicinal plants and reveals new patterns in the metabolome regulation of L. officinale.

4.
Syst Appl Microbiol ; 44(3): 126206, 2021 May.
Article in English | MEDLINE | ID: mdl-33945925

ABSTRACT

Two Gram-negative, aerobic, rod-shaped and yellow-orange pigmented bacterial strains (LMG 31523T and LMG 31524) were isolated from roots of wild-growing Alkanna tinctoria plants collected near Thessaloniki, Greece. Analysis of their 16S rRNA gene sequences revealed that they form a separate cluster related to the genus Roseomonas. A comparative whole genome analysis of the two strains and the type strains of related Roseomonas species revealed average nucleotide identity values from 78.84 and 80.32%. The G + C contents of the genomic DNA of strains LMG 31523T and LMG 31524 were 69.69% and 69.74%, respectively. Combined data from phenotypic, phylogenetic and chemotaxonomic studies indicated that the strains LMG 31523T and LMG 31524 represent a novel species of the genus Roseomonas. Genome analysis of the new strains showed a number of genes involved in survival in the rhizosphere environment and in plant colonization and confirmed the endophytic characteristics of LMG 31523T and LMG 31524. Since the strains LMG 31523T and LMG 31524 were isolated from a plant collected in Greece the name Roseomonas hellenica sp. nov. is proposed. The type strain is LMG 31523T (=CECT 30032T).


Subject(s)
Boraginaceae , Methylobacteriaceae , Phylogeny , Bacterial Typing Techniques , Base Composition , Boraginaceae/microbiology , DNA, Bacterial/genetics , Endophytes , Greece , Methylobacteriaceae/classification , Methylobacteriaceae/isolation & purification , Pigmentation , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Front Microbiol ; 12: 633488, 2021.
Article in English | MEDLINE | ID: mdl-33633713

ABSTRACT

Alkannin and shikonin (A/S) are enantiomeric naphthoquinones produced in the roots of certain plants from the Boraginaceae family such as Lithospermum spp. and Alkanna spp. They possess antimicrobial, anti-tumoral and wound healing properties. The production of secondary metabolites by Alkanna tinctoria might be influenced by its endomicrobiome. To study the interaction between this medicinal plant and its bacterial endophytes, we isolated bacteria from the roots of wild growing Alkanna tinctoria collected near to Athens and Thessaloniki in Greece. Representative strains selected by MALDI-TOF mass spectrometry were identified by partial 16S rRNA gene sequence analysis. In total, 197 distinct phylotypes of endophytic bacteria were detected. The most abundant genera recovered were Pseudomonas, Xanthomonas, Variovorax, Bacillus, Inquilinus, Pantoea, and Stenotrophomonas. Several bacteria were then tested in vitro for their plant growth promoting activity and the production of cell-wall degrading enzymes. Strains of Pseudomonas, Pantoea, Bacillus and Inquilinus showed positive plant growth properties whereas those of Bacteroidetes and Rhizobiaceae showed pectinase and cellulase activity in vitro. In addition, bacterial responses to alkannin and shikonin were investigated through resistance assays. Gram negative bacteria were found to be resistant to the antimicrobial properties of A/S, whereas the Gram positives were sensitive. A selection of bacteria was then tested for the ability to induce A/S production in hairy roots culture of A. tinctoria. Four strains belonging to Chitinophaga sp., Allorhizobium sp., Duganella sp., and Micromonospora sp., resulted in significantly more A/S in the hairy roots than the uninoculated control. As these bacteria can produce cell-wall degrading enzymes, we hypothesize that the A/S induction may be related with the plant-bacteria interaction during colonization.

6.
BMC Genomics ; 21(1): 24, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31914924

ABSTRACT

BACKGROUND: The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, only T. pasteurii and a non-characterized strain of Trichococcus, strain ES5, have the capacity of converting glycerol to mainly 1,3-propanediol. Comparative genomic analysis of Trichococcus species provides the opportunity to further explore the physiological potential and uncover novel properties of this genus. RESULTS: In this study, a genotype-phenotype comparative analysis of Trichococcus strains was performed. The genome of Trichococcus strain ES5 was sequenced and included in the comparison with the other nine type strains. Genes encoding functions related to e.g. the utilization of different carbon sources (glycerol, arabinan and alginate), antibiotic resistance, tolerance to low temperature and osmoregulation could be identified in all the sequences analysed. T. pasteurii and Trichococcus strain ES5 contain a operon with genes encoding necessary enzymes for 1,3-PDO production from glycerol. All the analysed genomes comprise genes encoding for cold shock domains, but only five of the Trichococcus species can grow at 0 °C. Protein domains associated to osmoregulation mechanisms are encoded in the genomes of all Trichococcus species, except in T. palustris, which had a lower resistance to salinity than the other nine studied Trichococcus strains. CONCLUSIONS: Genome analysis and comparison of ten Trichococcus strains allowed the identification of physiological traits related to substrate utilization and environmental stress resistance (e.g. to cold and salinity). Some substrates were used by single species, e.g. alginate by T. collinsii and arabinan by T. alkaliphilus. Strain ES5 may represent a subspecies of Trichococcus flocculiformis and contrary to the type strain (DSM 2094T), is able to grow on glycerol with the production of 1,3-propanediol.


Subject(s)
Carnobacteriaceae/genetics , Carnobacteriaceae/physiology , Bacterial Typing Techniques , Carnobacteriaceae/metabolism , Phenotype , Phylogeny , Propylene Glycols/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...