Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 300(6): 107296, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38641064

ABSTRACT

The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked ß-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.

2.
J Biol Chem ; 299(12): 105447, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949223

ABSTRACT

The post-translational modification of intracellular proteins by O-linked ß-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.


Subject(s)
Acetylglucosamine , Heart , Myocardium , N-Acetylglucosaminyltransferases , Sex Characteristics , Signal Transduction , Animals , Female , Male , Mice , Acetylglucosamine/metabolism , Heart/physiology , Ischemia/enzymology , Ischemia/metabolism , Myocardium/enzymology , Myocardium/metabolism , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational
3.
Anal Biochem ; 678: 115262, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37507081

ABSTRACT

Thousands of mammalian intracellular proteins are dynamically modified by O-linked ß-N-acetylglucosamine (O-GlcNAc). Global changes in O-GlcNAcylation have been associated with the development of cardiomyopathy, heart failure, hypertension, and neurodegenerative disease. Levels of O-GlcNAc in cells and tissues can be detected using numerous approaches; however, immunoblotting using GlcNAc-specific antibodies and lectins is commonplace. The goal of this study was to optimize the detection of O-GlcNAc in heart lysates by immunoblotting. Using a combination of tissue fractionation, immunoblotting, and galactosyltransferase labeling, as well as hearts from wild-type and O-GlcNAc transferase transgenic mice, we demonstrate that contractile proteins in the heart are differentially detected by two commercially available antibodies (CTD110.6 and RL2). As CTD110.6 displays poor reactivity toward contractile proteins, and as these proteins represent a major fraction of the heart proteome, a better assessment of cardiac O-GlcNAcylation is obtained in total tissue lysates with RL2. The data presented highlight tissue lysis approaches that should aid the assessment of the cardiac O-GlcNAcylation by immunoblotting.


Subject(s)
Neurodegenerative Diseases , Mice , Animals , Antibodies/metabolism , Proteome/metabolism , Heart , Contractile Proteins/metabolism , Acetylglucosamine , Protein Processing, Post-Translational , Mammals/metabolism
4.
Curr Protoc ; 1(5): e129, 2021 May.
Article in English | MEDLINE | ID: mdl-34004049

ABSTRACT

O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that regulates normal physiology and the cell stress response. Dysregulation of O-GlcNAc cycling is implicated in the etiology of type II diabetes, heart failure, hypertension, and Alzheimer's disease, as well as cardioprotection. These protocols cover simple and comprehensive techniques for detecting proteins modified by O-GlcNAc and studying the enzymes that add or remove O-GlcNAc. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Increasing the stoichiometry of O-GlcNAc on proteins before analysis Basic Protocol 2: Detection of proteins modified by O-GlcNAc using antibodies Basic Protocol 3: Detection of proteins modified by O-GlcNAc using the lectin sWGA Support Protocol 1: Control for O-linked glycosylation Basic Protocol 4: Detection and enrichment of proteins using WGA-agarose Support Protocol 2: Digestion of proteins with hexosaminidase Alternate Protocol: Detection of proteins modified by O-GlcNAc using galactosyltransferase Support Protocol 3: Autogalactosylation of galactosyltransferase Support Protocol 4: Assay of galactosyltransferase activity Basic Protocol 5: Characterization of labeled glycans by ß-elimination and chromatography Basic Protocol 6: Detection of O-GlcNAc in 96-well plates Basic Protocol 7: Assay for OGT activity Support Protocol 5: Desalting of O-GlcNAc transferase Basic Protocol 8: Assay for O-GlcNAcase activity.


Subject(s)
Acetylglucosamine , Diabetes Mellitus, Type 2 , Acetylglucosamine/metabolism , Cell Nucleus/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycosylation , Humans , Protein Processing, Post-Translational
5.
ChemMedChem ; 13(7): 736-747, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29430850

ABSTRACT

Efavirenz (EFV), an antiretroviral that interacts clinically with co-administered drugs via activation of the pregnane X receptor (PXR), is extensively metabolized by the cytochromes P450. We tested whether its primary metabolite, 8-hydroxyEFV (8-OHEFV) can activate PXR and potentially contribute to PXR-mediated drug-drug interactions attributed to EFV. Luciferase reporter assays revealed that despite only differing from EFV by an oxygen atom, 8-OHEFV does not activate PXR. Corroborating this, treatment with EFV for 72 h elevated the mRNA abundance of the PXR target gene, Cyp3a11, by approximately 28-fold in primary hepatocytes isolated from PXR-humanized mice, whereas treatment with 8-OHEFV did not result in a change in Cyp3A11 mRNA levels. FRET-based competitive binding assays and isothermal calorimetry demonstrated that even with the lack of ability to activate PXR, 8-OHEFV displays an affinity for PXR (IC50 12.1 µm; KD 7.9 µm) nearly identical to that of EFV (IC50 18.7 µm; KD 12.5 µm). The use of 16 EFV analogues suggest that other discreet changes to the EFV structure beyond the 8-position are well tolerated. Molecular docking simulations implicate an 8-OHEFV binding mode that may underlie its divergence in PXR activation from EFV.


Subject(s)
Benzoxazines/metabolism , Pregnane X Receptor/metabolism , Alkynes , Animals , Benzoxazines/chemistry , Benzoxazines/pharmacology , Binding Sites , Cyclopropanes , Hepatocytes/drug effects , Humans , Ligands , Mice , Molecular Docking Simulation , Molecular Structure , Pregnane X Receptor/agonists , Pregnane X Receptor/chemistry , Protein Binding , Structure-Activity Relationship
6.
J Virol ; 85(14): 7436-43, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21561916

ABSTRACT

Many coxsackievirus B isolates bind to human decay-accelerating factor (DAF) as well as to the coxsackievirus and adenovirus receptor (CAR). The first-described DAF-binding isolate, coxsackievirus B3 (CB3)-RD, was obtained during passage of the prototype strain CB3-Nancy on RD cells, which express DAF but very little CAR. CB3-RD binds to human DAF, whereas CB3-Nancy does not. To determine the molecular basis for the specific interaction of CB3-RD with DAF, we produced cDNA clones encoding both CB3-RD and CB3-Nancy and mutated each of the sites at which the RD and Nancy sequences diverged. We found that a single amino acid change, the replacement of a glutamate within VP3 (VP3-234E) with a glutamine residue (Q), conferred upon CB3-Nancy the capacity to bind DAF and to infect RD cells. Readaptation of molecularly cloned CB3-Nancy to RD cells selected for a new virus with the same VP3-234Q residue. In experiments with CB3-H3, another virus isolate that does not bind measurably to DAF, adaptation to RD cells resulted in a DAF-binding isolate with a single amino acid change within VP2 (VP2-138 N to D). Both VP3-234Q and VP2-138D were required for binding of CB3-RD to DAF. In the structure of the CB3-RD-DAF complex determined by cryo-electron microscopy, both VP3-234Q and VP2-138D are located at the contact site between the virus and DAF.


Subject(s)
Amino Acid Substitution , Capsid , Enterovirus B, Human/physiology , Amino Acid Sequence , Base Sequence , DNA Primers , Enterovirus B, Human/chemistry , Fluorescent Antibody Technique , HeLa Cells , Humans , Molecular Sequence Data , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...