Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Environ Res ; 252(Pt 2): 118898, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38614199

ABSTRACT

This investigation was performed to obtain a promising phytase enzyme producing yeast. In this regard, the PSM was used to isolate the phytase-producing Hanseniaspora guilliermondii S1 (MG663578) from sugarcane juice. The SSF optimum conditions for phytase generation were optimized using (OVAT) one-variable-at-a-time strategy using both Box-Behnken design and shake flask method (g/100 ml: 0.05 yeast extract, 0.15 Peptone, 0.05 malt extract 0.50 dextrose, pH 5.8 and 28ᵒC). The protein model developed was shown to be adequate for phytase production (91% accuracy), with the greatest phytase productivity in shake flask with substrate jack fruit seed powder being 395 ± 0.43 U/ml compared to 365U/ml for the BBD projected value. Crude Phytase was partially purified with a protein recovery of 43%, revealing a molecular weight of 120 kDa. It had an enzyme kinetic value of Km 3.3 mM and a Vmax of 19.1 mol/min. The 3D structure of PhyS1 amino acid sequences (PhyS1. B99990002) was simulated using Modeler 9.23, and the validated result revealed that 86.7% were in the favored region by Ramachandran plot. The SAVES server verified the 3D PDB file as satisfactory, and the model (in.pdb format) was uploaded in the PMDB database with the accession number ID: PM0082974. At the lab level, Hanseniaspora guilliermondii S1 (MG663578) producing phytase exhibited successful plant growth promotion activity in Ragi - CO 19 (Eleusine coracana L.) and Rice -Navarai - IR 64 (Oryza sativa L.). As a result, a phytase-based formulation for sustainable agriculture must be developed and tested on a large scale in diverse geographical areas of agricultural lands to determine its effect and potential on plant development.

2.
Sci Total Environ ; 926: 172128, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38565350

ABSTRACT

The threat of heavy metal (HM) pollution looms large over plant growth and human health, with tobacco emerging as a highly vulnerable plant due to its exceptional absorption capacity. The widespread cultivation of tobacco intensifies these concerns, posing increased risks to human health as HMs become more pervasive in tobacco-growing soils globally. The absorption of these metals not only impedes tobacco growth and quality but also amplifies health hazards through smoking. Implementing proactive strategies to minimize HM absorption in tobacco is of paramount importance. Various approaches, encompassing chemical immobilization, transgenic modification, agronomic adjustments, and microbial interventions, have proven effective in curbing HM accumulation and mitigating associated adverse effects. However, a comprehensive review elucidating these control strategies and their mechanisms remains notably absent. This paper seeks to fill this void by examining the deleterious effects of HM exposure on tobacco plants and human health through tobacco consumption. Additionally, it provides a thorough exploration of the mechanisms responsible for reducing HM content in tobacco. The review consolidates and synthesizes recent domestic and international initiatives aimed at mitigating HM content in tobacco, delivering a comprehensive overview of their current status, benefits, and limitations.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Nicotiana , Metals, Heavy/analysis , Plants , Environmental Pollution/analysis , Soil/chemistry , Soil Pollutants/analysis
3.
Environ Res ; 251(Pt 2): 118727, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38490629

ABSTRACT

Agriculture plays a vital role in the food security and economies of Asian countries. Annually, numerous metric tons of vegetable and fruit wastes are disposed of. This research aimed to convert the food wastes encompassing the vegetable and fruit wastes into solid and liquid organic fertilizer and to evaluate their influence on the growth (germination, phytochemicals, and biomolecules) of Solanum lycopersicum and Capsicum annum. Solanum lycopersicum, known as tomato, and Capsicum annum, known as bell pepper or chili pepper, are globally significant crops valued for their medicinal properties and economic importance. The pot experiment was performed with organic fertilizers (solid and liquid organic fertilizer) and compared with the influence of chemical fertilizer and control soil without fertilizers. Interestingly, the liquid organic fertilizer effectively enhanced the biometric profile and chlorophyll content of S. lycopersicum and C. annum Viz., 1.23 mg g-1 and 0.89 mg g-1, respectively. The results of a 30-days pot experiment with various fertilizer treatments showed significant influence of liquid organic fertilizer on the fresh and dry weight biomass of both S. lycopersicum and C. annum. Subsequently, the solid organic fertilizer showed considerable influence on test crops, and the influence of these organic fertilizers was more significant than the chemical fertilizer on crop growth in 30-days experiment. These results suggest that the sustainable approach can effectively convert vegetables and fruit waste into valuable organic fertilizer enriched with plant growth supporting essential nutritional elements.

4.
Environ Res ; 251(Pt 2): 118350, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38341072

ABSTRACT

The present work describes the fabrication of the quaternary Zn-Cd-Sn-S nanostructure and its use in photocatalytic remediation of the biological contaminant pyrene from water resources. Nanostructures fabricated were characterized by XRD, UV-DRS, FTIR, DLS, EDX, and SEM. In addition, an agar well diffusion test was conducted to determine the antimicrobial activity. Zn-Cd-Sn-S (ZCSS) nanostructures were evaluated for their photocatalytic degrading potential by using pyrene as a model pollutant and evaluating the effects of parameters like initial pyrene concentration, nanocatalyst dosage, solution pH, and light sources during batch adsorption. Nanostructures had a size of 16.74 nm according to the XRD analysis. With a 300 min time interval, ZCSS nanostructures achieved the highest removal rate of 86.3%. Pyrene degradation metabolites were identified using GC-MS analysis of the degraded samples. A Freundlich isothermal (R2 0.9) and pseudo-first-order (R2 0.952) reaction kinetic path best fit the adsorption results for pyrene by the fabricated ZCSS nanostructure, based on the adsorption and kinetic studies. Zn-Cd-Sn-S exhibited the highest antibacterial activity against Staphylococcusaureus (22.4 mM). Due to the combined synergistic actions of the constituent metals, this quaternary nanostructure exhibited exceptional photocatalytic activity. To our est knowledge, the ZCSS nanostructure was made and used to remove pyrene by photocatalysis and fight microbes. Ultimately, the ZCSS nanostructure was found to be an effective photocatalyst for eradicating pathogenic microbes from water.

5.
Aquat Toxicol ; 268: 106851, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325057

ABSTRACT

The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.


Subject(s)
Herbicides , Pesticides , Water Pollutants, Chemical , Humans , Ecosystem , Water Pollutants, Chemical/toxicity , Pesticides/analysis , Herbicides/toxicity , Herbicides/analysis , Agriculture
6.
Parasitol Res ; 122(12): 3205-3212, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874391

ABSTRACT

Mosquitoes are important vectors of several arthropod-borne diseases, which remain a priority for epidemiological research. Mosquito vector control strategies have traditionally relied on chemical insecticides such as synthetic pyrethroids. However, the indiscriminate use of pesticides has resulted in the development of resistance in many mosquito species. In insects, resistance evolves primarily through the overexpression of one or more gene products from the cytochrome P450, carboxylesterase, and glutathione superfamilies. The current study examined the expression of cytochrome P450 CYP6M2, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes in larvae and adults of a permethrin-resistant (PerRes) and susceptible (Sus) Culex quinquefasciatus strains. The results showed that the CYP6AA7 gene was overexpressed (10-fold) in larvae and adults with PerRes (p < 0.01) followed by CYPJ34 (9.0-fold) and CYP6Z2 (5.0-fold) compared to the Sus, whereas fewer changes in CYP6M gene expression were observed in PerRes adults (p < 0.05), and no expression was found in larvae. The esterase gene was overexpressed in PerRes larvae (9.0-fold) followed by adults (2.5-fold) compared to the susceptible strain. Based on data, the present study suggests that cytochrome P450, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes were involved in permethrin resistance in larval and adult Cx. quinquefasciatus.


Subject(s)
Culex , Insecticides , Pyrethrins , Animals , Permethrin/pharmacology , Larva/genetics , Larva/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Esterases/genetics , Esterases/metabolism
7.
Sci Total Environ ; 901: 166468, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37619729

ABSTRACT

Phosphorus (P) is a limiting nutrient in the soil-plant nutrient cycling. Although the exogenous application of chemical P fertilizers can satisfy crop P requirements during critical growth phases. While excessive P fertilizers use results in low phosphorus acquisition efficiency (PAE), it has serious environmental consequences and hastens the depletion of P mineral reserves. Phosphate-solubilizing bacteria (PSB) have the potential to make insoluble phosphate available to plants through solubilization and mineralization, increasing crop yields while maintaining environmental sustainability. Existing reviews mainly focus on the beneficial effects of PSB on crop performance and related mechanisms, while few of them elucidate the action mechanisms of PSB in soil-microbe-plant interactions for crop cultivation with high yield efficiency. Hence, this study provides a comprehensive review of the physicochemical and molecular mechanisms (e.g., root exudates, extracellular polysaccharides, organic acids, phosphatases, and phosphate-specific transport systems) of PSB to facilitate the P cycle in the soil-plant systems. Further, the potential of commercial applications of PSB (e.g., genetic engineering, seed priming and coating) are also discussed in order to highlight their contribution to sustainable agriculture. Finally, existing challenges and future prospects in agricultural applications are proposed. In conclusion, we firmly believe that PSB represent a highly significant biotechnological tool for enhancing agricultural productivity and offers a wide range of extensive potential applications.

8.
Chemosphere ; 339: 139738, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544520

ABSTRACT

Mining is one of the major contributors for land degradation and severe heavy metals based soil pollution. In this study, the physicochemical properties of magnesite mine soil was investigated and assess the optimistic and eco-friendly remediation approach with Hibiscus rosa-sinensis with the effect of pre-isolated Acidithiobacillus thiooxidans. The physicochemical properties analysis results revealed that most the parameter were either too less or beyond the permissible limits. The pre-isolated A. thiooxidans showed remarkable multi-metal tolerance up to 800 µg mL-1 concentration of Cr, Cd, Pb, and Mn. Heavy metal content in polluted soil was reduced to avoid more metal toxicity by diluting with fertile control soil as 80:20 and 60:40. The standard greenhouse experiment was performed to evaluate the phytoextraction potential of H. rosa-sinensis under the influence of A. thiooxidans in various treatment groups (G-I to G-V). The outcome of this investigation was declared that the multi-metal tolerant A. thiooxidans from G-III and G-II showed remarkable effect on growth and phytoextraction ability of H. rosa-sinensis on metal polluted magnesite mine soil in 180 d greenhouse study. These results suggested that the combination of H. rosa-sinensis and A. thiooxidans could be used as an excellent hyper-accumulator to extract metal pollution from polluted soil.


Subject(s)
Hibiscus , Metals, Heavy , Rosa , Soil Pollutants , Hibiscus/metabolism , Rosa/metabolism , Biodegradation, Environmental , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
9.
Chemosphere ; 339: 139739, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37549749

ABSTRACT

The heavy metal pollution is a serious environmental pollution around the globe and threatens the ecosystem. The physicochemical traits (pH, Electrical conductivity, hardness, NPK, Al, Fe, Cd, Cr, Pb, Mg, and Mn) of soil sample collected from the polluted site were analyzed and found that the most of the metal contents were beyond the acceptable limits of national standards. The metals such as Mn (1859.37 ± 11.25 mg kg-1), Cd (24.86 ± 1.85 mg kg-1), Zn (795.64 ± 9.24 mg kg-1), Pb (318.62 ± 5.85 mg kg-1), Cr (186.84 ± 6.84 mg kg-1), and Al (105.84 ± 5.42 mg kg-1) were crossing the permissible limits. The pre-isolated L. ferrooxidans showed considerable metal tolerance to metals such as Al, Cd, Cr, Pb, Mg, and Mn at up to the concentration of 750 µg mL-1 and also have remediation potential on polluted soil in a short duration of treatment. The greenhouse study demonstrated that the bio/phytoremediation potential of metal tolerant L. ferrooxidans and R. communis under various remediation (A, B, and C) groups. Surprisingly, remediation group C demonstrated greater phytoextraction potential than the other remediation groups (A and B). These results strongly suggest that coexistence of L. ferrooxidans and R. communis had a significant positive effect on phytoextraction on metal-contaminated soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Ricinus , Cadmium , Sewage , Ecosystem , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Biodegradation, Environmental , Soil/chemistry
10.
J Environ Manage ; 345: 118732, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37536126

ABSTRACT

Agricultural as well as industrial processes, such as mining and textile activities, are just a few examples of anthropogenic activities that have a long-term negative impact on the environment. Each of the aforementioned factors increases the concentration of heavy metals in soil. Heavy metal contamination in soil causes a wide range of environmental issues and is harmful to microbes, plants, and animals. Because of their non-biodegradability and toxic effects, preventing additional metal contamination and remediating the vast majority of contaminated sites around the world is critical. Hence, this review focuses on the effects of metal contamination on soil microbes, as well as plant-microbe interactions. Plant-associated probiotics reduce metal accumulation; the introduction of beneficial microbes is regarded as one of the most promising approaches to improving metal stress tolerance; thus, the study focuses on plant-microbe interactions as well as their actual implications via phytoremediation. Plant-microbe interaction can play an important role in acclimating vegetation (plants) to metalliferous conditions and should thus be studied to improve microbe-aided metal tolerance in plants. Plant-interacted microbes reduce metal accumulation in plant cells and metal bioaccumulation in the soil through a variety of processes. A novel phytobacterial approach, such as genetically modified microbes, is now being used to improve heavy metal cleanup as well as stress tolerance among plants. This review examines our current understanding of such negative consequences of heavy metal stresses, signaling responses, and the role of plant-associated microbiota in heavy metal stress tolerance and interaction.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil , Soil Pollutants/analysis , Plants , Biodegradation, Environmental
11.
Food Sci Nutr ; 11(7): 4191-4210, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457145

ABSTRACT

This systematic review identified various bioactive compounds which have the potential to serve as novel drugs or leads against acute myeloid leukemia. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy that arises from the dysregulation of cell differentiation, proliferation, and cell death. The risk factors associated with the onset of AML include long-term exposure to radiation and chemicals such as benzene, smoking, genetic disorders, blood disorders, advancement in age, and others. Although novel strategies to manage AML, including a refinement of the conventional chemotherapy regimens, hypomethylating agents, and molecular targeted drugs, have been developed in recent years, resistance and relapse remain the main clinical problems. In this study, three databases, PubMed/MEDLINE, ScienceDirect, and Google Scholar, were systematically searched to identify various bioactive compounds with antileukemic properties. A total of 518 articles were identified, out of which 59 were viewed as eligible for the current report. From the data extracted, over 60 bioactive compounds were identified and divided into five major groups: flavonoids, alkaloids, organosulfur compounds, terpenes, and terpenoids, and other known and emerging bioactive compounds. The mechanism of actions of the analyzed individual bioactive molecules differs remarkably and includes disrupting chromatin structure, upregulating the synthesis of certain DNA repair proteins, inducing cell cycle arrest and apoptosis, and inhibiting/regulating Hsp90 activities, DNA methyltransferase 1, and histone deacetylase 1.

12.
Heliyon ; 9(8): e18426, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37520972

ABSTRACT

The Pharmaceuticals and Personal Care Products (PPCPs) presence at harmful levels has been identified in aquatic ecosystems all over the world. Currently, PPCPs are more common in aquatic regions and have been discovered to be extremely harmful to aquatic creatures. Waste-water treatment facilities are the primary cause of PPCPs pollution in aquatic systems due to their limited treatment as well as the following the release of PPCPs. The degree of PPCPs elimination is primarily determined by the method applied for the remediation. It must be addressed in an eco-friendly manner in order to significantly improve the environmental quality or, at the very least, to prevent the spread as well as effects of toxic pollutants. However, when compared to other methods, environmentally friendly strategies (biological methods) are less expensive and require less energy. Most biological methods under aerobic conditions have been shown to degrade PPCPs effectively. Furthermore, the scientific literature indicates that with the exception of a few extremely hydrophobic substances, biological degradation by microbes is the primary process for the majority of PPCPs compounds. Hence, this review discusses about the optimistic role of microbe concerned in the degradation or transformation of PPCPs into non/less toxic form in the polluted environment. Accordingly, more number of microbial strains has been implicated in the biodegradation/transformation of harmful PPCPs through a process termed as bioremediation and their limitations.

13.
Environ Res ; 231(Pt 1): 116112, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37182829

ABSTRACT

This study was designed to appraise the antioxidant and anticancer competence of solvent extracts of Tecoma stans (Linn) and analyze the phytoligands interaction against Bcl 2 VEGFR2 through in silico studies. The phytochemical analysis revealed that the ethyl acetate extract contains more number of pharmaceutically valuable phytochemicals than other solvent extracts. Among the various phytochemicals, flavonoid was found as a predominant component, and UV-Vis- spectrophotometer analysis initially confirmed it. Hence, the column chromatogram was performed to purify the flavonoid, and High-performance liquid chromatography (HPLC) was performed. It revealed that the flavonoid enriched fraction by compared with standard flavonoid molecules. About 84.69% and 80.43% of antioxidant activity were found from ethyl acetate extract of bark and flower at the dosage of 80 µg mL-1 with the IC50 value of 47.24 and 43.40 µg mL-1, respectively. In a dose-dependent mode, the ethyl acetate extract of bark and flower showed cytotoxicity against breast cancer cell line MCF 7 (Michigan Cancer Foundation-7) as up to 81.38% and 80.94% of cytotoxicity respectively. Furthermore, the IC50 was found as 208.507 µg mL-1 and 207.38 µg mL-1 for bark and flower extract correspondingly. About 10 medicinal valued flavonoid components were identified from bark (6) and flower (4) ethyl acetate extract through LC-MS analysis. Out of 10 components, the 3,5-O-dicaffeoylquinic acid (ΔG -8.8) and Isorhamnetin-3-O-rutinoside (ΔG -8.3) had the competence to interact with Bcl 2 (B-Cell Lymphoma 2) and VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) respectively with more energy. Hence, these results confirm that the ethyl acetate extract of bark and flower of T. stans has significant medicinal potential and could be used as antioxidant and anticancer agent after some animal performance study.


Subject(s)
Antioxidants , Bignoniaceae , Animals , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Bark/chemistry , Vascular Endothelial Growth Factor Receptor-2/analysis , Vascular Endothelial Growth Factor A/analysis , Flavonoids/pharmacology , Flavonoids/analysis , Flowers/chemistry , Solvents , Phytochemicals/analysis , Bignoniaceae/chemistry
14.
Environ Res ; 231(Pt 2): 116152, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224949

ABSTRACT

The number of studies about the use of efficient techniques to treat contaminated water bodies has increased in recent years. The use of bioremediation method for the reduction of contaminants from aqueous system is receiving a lot of attention. Thus, this study was designed to assess the Eichhornia crassipes biochar amended pollutants sorption competence of multi-metal tolerant Aspergillus flavus on South Pennar River. The physicochemical characteristics declared that the, half of the parameters (turbidity, TDS, BOD, COD, Ca, Mg, Fe, free NH3, Cl-, and F-) of South Pennar River were beyond the permissible limits. Furthermore, the lab-scale bioremediation investigation with different treatment groups (group I, II, and III) revealed that the group III (E. crassipes biochar and A. flavus mycelial biomass) showed considerable remediation efficiency on South Pennar River water in 10 days of treatment. The metals adsorbed on the surface of E. crassipes biochar and A. flavus mycelial biomass was also affirmed by SEM analysis. Hence such findings, E. crassipes biochar amended A. flavus mycelial biomass could be a sustainable method of remediating contaminated South Pennar River water.


Subject(s)
Eichhornia , Environmental Pollutants , Water Pollutants, Chemical , Environmental Pollutants/analysis , Rivers , Water Pollutants, Chemical/analysis , Metals/analysis , Biodegradation, Environmental
15.
Environ Res ; 231(Pt 2): 116209, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37217129

ABSTRACT

Bemisia tabaci Gennadius, also renowned as the silver leaf whitefly, is among the most damaging polyphagous insect pests in many commercially important crops and commodities. A set of field experiments were conducted for three consecutive years i.e., 2018-2020, to investigate the role of variations in rainfall, temperature, and relative humidity on the abundance of B. tabaci in okra (Abelmoschus esculentus L. Moench). In the first experiment, the variety Arka Anamika was cultivated twice a year to analyse the incidence of B. tabaci concerning the prevailing weather factors and the overall pooled incidence recorded during the dry and wet season was 1.34 ± 0.51 to 20.03 ± 1.42 and 2.26 ± 1.08 to 18.3 ± 1.96, respectively. Similarly, it was observed that the highest number of B. tabaci catch (19.51 ± 1.64 whiteflies/3 leaves) was recorded in morning hours between 08:31 to 09:30 a.m. The Yellow Vein Mosaic Disease (YVMD) is a devastating disease of okra caused by begomovirus, for which B. tabaci acts as a vector. In another experiment, screening was conducted to check the relative susceptibility of three different varieties viz., ArkaAnamika, PusaSawani, and ParbhaniKranti against B. tabaci (incidence) and YVMD ((Percent Disease Incidence (PDI), Disease Severity Index (DSI), and Area Under the Disease Progress Curve (AUDPC)). The recorded data was normalized by standard transformation and subjected to ANOVA for population dynamics and PDI. Pearson's rank correlation matrix and Principal Component Analysis (PCA) have been used to relate the influences of various weather conditions on distribution and abundance. SPSS and R software were used to create the regression model for predicting the population of B. tabaci. Late sown PusaSawani evolved as a highly susceptible variety in terms of B. tabaci (24.83 ± 6.79 adults/3leaves; mean ± SE; N = 10) as well as YVMD i.e., PDI (38.00 ± 4.95 infected plants/50plants), DSI (71.6-96.4% at 30 DAS) and AUDPC (mean ß-value = 0.76; R2 = 0.96) while early sown Parbhani Kranti least susceptible to both. However, the variety ArkaAnamika was observed as moderately susceptible to B. tabaci and its resultant disease. Moreover, environmental factors were predominantly responsible for regulating the population of insect pests in the field and hence its productivity like rainfall and relative humidity were negative while the temperature was positively correlated with B. tabaci (incidence) and YVMD (AUDPC). The findings are helpful for the farmers to choose need-based IPM strategies than timing-based, which would fit perfectly with the present agro-ecosystems in all ways.


Subject(s)
Abelmoschus , Hemiptera , Animals , Hemiptera/physiology , Incidence , Ecosystem , Weather
16.
J Environ Manage ; 334: 117532, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801803

ABSTRACT

Industrialization and other human activity represent significant environmental hazards. Toxic contaminants can harm a comprehensive platform of living organisms in their particular environments. Bioremediation is an effective remediation process in which harmful pollutants are eliminated from the environment using microorganisms or their enzymes. Microorganisms in the environment often create a variety of enzymes that can eliminate hazardous contaminants by using them as a substrate for development and growth. Through their catalytic reaction mechanism, microbial enzymes may degrade and eliminate harmful environmental pollutants and transform them into non-toxic forms. The principal types of microbial enzymes which can degrade most hazardous environmental contaminants include hydrolases, lipases, oxidoreductases, oxygenases, and laccases. Several immobilizations, genetic engineering strategies, and nanotechnology applications have been developed to improve enzyme performance and reduce pollution removal process costs. Until now, the practically applicable microbial enzymes from various microbial sources and their ability to degrade multipollutant effectively or transformation potential and mechanisms are unknown. Hence, more research and further studies are required. Additionally, there is a gap in the suitable approaches considering toxic multipollutants bioremediation using enzymatic applications. This review focused on the enzymatic elimination of harmful contaminants in the environment, such as dyes, polyaromatic hydrocarbons, plastics, heavy metals, and pesticides. Recent trends and future growth for effectively removing harmful contaminants by enzymatic degradation are also thoroughly discussed.


Subject(s)
Environmental Pollutants , Metals, Heavy , Humans , Biodegradation, Environmental , Environmental Pollutants/metabolism , Metals, Heavy/toxicity , Laccase
17.
Environ Res ; 222: 115413, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736758

ABSTRACT

The heavy metal contamination, which causes toxic effects on plants, has evolved into a significant constraint to plant quality and yield. This scenario has been exacerbated by booming population expansion and intrinsic food insecurity. Numerous studies have found that counteracting heavy metal tolerance and accumulation necessitates complex mechanisms at the biochemical, molecular, tissue, cellular and whole plant levels, which may demonstrate increased crop yields. Essential and non-essential elements have similar harmful impacts on plants including reduced biomass production, growth and photosynthesis inhibition, chlorosis, altered fluid balance and nutrient absorption, as well as senescence, all of which led to plant death. Notable biotechnological strategies for effective remediation require knowledge of metal stress and tolerance mechanisms in plants. Assimilation, cooperation and integration, of biotechnological improvements, are required for adequate environmental rehabilitation in the emerging area of bioremediation. This review emphasizes a deeper understanding of metal toxicity, stress, and potential tolerance mechanisms in plants exposed to metal stress. The microbe-mediated metal toxic effects and stress mitigation knowledge can be used to create a new strategic plan as feasible, sustainable, and environmentally friendly bioremediation techniques.


Subject(s)
Metals, Heavy , Biodegradation, Environmental , Metals, Heavy/toxicity , Plants
18.
Environ Res ; 216(Pt 3): 114734, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36343715

ABSTRACT

This research was performed to evaluate the nickel oxide nanoparticles (NiONPs) fabricating potential of orange fruit waste (OFW) aqueous extract. Moreover characterize the synthesized OFW-NiONPs through standard techniques such as UV-vis. spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Scanning Electron Microscope (SEM) analyses. Furthermore, the antimicrobial and antioxidant potential of OFW-NiONPs were studied against most common microbial pathogens (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Aspergillus niger) and free radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2, OH, and FRAP). A sharp absorbance peak was obtained at 324 nm under UV-vis spectrum analysis that confirmed that the synthesis of OFW-NiONPs and it has been capped and stabilized by numbers of active functional groups studied through FTIR analysis. SEM and DLS analyses revealed that the cubic and triangle shaped OFW-NiONPs with the size intensity distribution was ranging from 21 nm to 130 nm. Interestingly, the OFW-NiONPs showed remarkable antimicrobial activity against the common microbial pathogens in the order of E. coli > A. niger > K. pneumoniae > B. subtilis > S. aureus at increased concentration of 200 µg mL-1. Similarly, the synthesized OFW-NiONPs also possess significant free radicals scavenging activity against DPPH, OH, and FRAP. These results conclude that this OFW-NiONPs can be considered for some biomedical applications after the investigations of some in-vivo research.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Antioxidants/pharmacology , Antioxidants/analysis , Staphylococcus aureus , Metal Nanoparticles/chemistry , Escherichia coli , Microbial Sensitivity Tests , Fruit/chemistry , Hydrogen Peroxide , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Anti-Infective Agents/pharmacology
19.
Chemosphere ; 311(Pt 1): 136889, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36257390

ABSTRACT

The current study investigated the plant growth promoting (PGP) characteristics of multi-metal-tolerant Bacillus cereus and their positive effect on the physiology, biomolecule substance, and phytoremediation ability of Chrysopogon zizanioides in metal-contaminated soil. The test soil sample was detrimentally contaminated by metals including Cd (31 mg kg-1), Zn (7696 mg kg-1), Pb (326 mg kg-1), Mn (2519 mg kg-1) and Cr (302 mg kg-1) that exceeded Indian standards. The multi-metal-tolerant B. cereus seemed to have superb PGP activities including fabrication of hydrogen cyanide, siderophore, Indole Acetic Acid, N2 fixation, as well as P solubilisation. Such multi-metal-tolerant B. cereus attributes can dramatically reduce or decontaminate metals in contaminated soils, and their PGP attributes significantly improve plant growth in contaminated soils. Hence, without (study I) and with (study II) the blending of B. cereus, this strain vastly enhances the growth and phytoremediation potency of C. zizanioides on metal contaminated soil. The results revealed that the physiological data, biomolecule components, and phytoremediation efficiency of C. zizanioides (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g-1) seem to have been greatly effective in study II due to the metal solubilizing and PGP characteristics of B. cereus. This is a one-of-a-kind report on the effect of B. cereus's multi-metal tolerance and PGP characteristics on the development and phytoextraction effectiveness of C. zizanioides in metal-polluted soil.


Subject(s)
Bacillus , Chrysopogon , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Soil , Soil Pollutants/toxicity , Soil Pollutants/analysis , Cadmium , Lead , Metals, Heavy/toxicity , Metals, Heavy/analysis
20.
Chemosphere ; 311(Pt 1): 136899, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36265702

ABSTRACT

The purpose of this study was to find the most cadmium (Cd2+) tolerant and remediated bacteria isolate from KNO3 processing unit contaminated soil. One isolate out of 19 isolates possessed excellent Cd2+ tolerance than others, which was recognized as Enterobacter hormaechei SFC3 through molecular characterization (16S rRNA sequencing). The identified E. hormaechei SFC3 contained 55% and 45% of GC and AT content, respectively. The wild and acridine orange mutated E. hormaechei SFC3 exhibited excellent resistance to Cd2+ up to the concentration of 1500 µg mL-1. Furthermore, the wild E. hormaechei SFC3 and mutated E. hormaechei SFC3 showed 82.47% and 90.21% of Cd2+ remediation on 6th days of treatment respectively. Similarly, the Cd2+ tolerant wild and mutated E. hormaechei SFC3 showed considerable resistance to all the tested antibiotics. The findings indicate that E. hormaechei SFC3 isolated from KNO3 processing unit contaminated soil is a promising candidate for microbial remediation of Cd2+ contamination.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/toxicity , Soil , RNA, Ribosomal, 16S , Enterobacter/genetics , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...