Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Adv Protein Chem Struct Biol ; 140: 419-492, 2024.
Article in English | MEDLINE | ID: mdl-38762277

ABSTRACT

Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.


Subject(s)
Immunotherapy , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Oncolytic Virotherapy/methods , Animals
4.
Mol Neurobiol ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064106

ABSTRACT

The most prevalent form of dementia, Alzheimer's disease (AD) is a chronic illness that is on the rise among the geriatric population. Even though research into its biochemical, genetic, and cytogenetic pathways has advanced, its aetiology is still unclear and complex. In this study, we recruited sixty-eight participants diagnosed with AD where the cytogenetic, biochemical parameters and genetic mutations were analysed. Our results revealed chromosomal aberrations such as aneuploidies in the peripheral blood of Alzheimer's disease patients. Biochemical parameters revealed no statistical significance in the study though a pattern could be observed in the serum levels. Further few novel mutations at the c.21 C > T, c.56G > A were observed in the MCU gene of mitochondrial calcium uniporter. All these findings reveal the need for a larger cohort study to gain a better and more detailed understanding of the aetiology of Alzheimer's disease.

5.
J Mol Neurosci ; 73(11-12): 912-920, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37845428

ABSTRACT

Parkinson's disease (PD) is speculated with genetic and environmental factors. At molecular level, the mitochondrial impact is stated to be one of the causative reasons for PD. In this study, we investigated the mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels along with mitochondrial tRNA alterations among three age categories of PD. By determining the genetic and organellar functionality using molecular techniques, the ROS levels were reported to be high with decreased MMP and ATP in the late-onset age group than in other two age categories. Likewise, the tRNA significancy in tRNAThr and tRNAGln was noticed with C4335T and G15927A mutations in late-onset and early-onset PD groups respectively. Therefore, from the findings, ageing has shown a disruption in tRNA metabolism leading to critical functioning of ATP synthesis and MMP, causing oxidative stress in PD patients. These physiological outcomes show that ageing has a keen role in the divergence of mitochondrial function, thereby proving a correlation with ageing and maintenance of mitochondrial homeostasis in PD.


Subject(s)
Parkinson Disease , RNA, Transfer, Thr , Humans , RNA, Transfer, Thr/genetics , RNA, Transfer, Thr/metabolism , RNA, Transfer, Gln/genetics , RNA, Transfer, Gln/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Reactive Oxygen Species/metabolism , India , Mitochondria/genetics , Mitochondria/metabolism , Adenosine Triphosphate/metabolism
6.
Adv Biol (Weinh) ; 7(12): e2300097, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37590305

ABSTRACT

Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.


Subject(s)
Parkinson Disease , Telomerase , Humans , Aged , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/therapy , Telomerase/genetics , Telomerase/metabolism , Leukocytes, Mononuclear/metabolism , Precision Medicine , Telomere/genetics , Telomere/metabolism
7.
RSC Med Chem ; 14(7): 1331-1343, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37484570

ABSTRACT

A new series of 8-nitroquinolone-based aromatic heterocyclic acyl hydrazones have been synthesised and characterised through various spectroscopic techniques. They were theoretically examined for molecular docking with various proteins related to the apoptosis of the non-small cell lung cancer cell line A549. The results indicate that the possible modes of interaction of all the synthesised compounds are compatible for use as anti-proliferative drugs. Also, the drug-likeness of the compounds was examined through theoretical ADMET analysis, which indicated good gastrointestinal absorption as well as low toxicity. Selected compounds were evaluated for their in vitro anti-cancer activity using A549, MCF-7 and HeLa cell lines through an MTT assay to determine cytotoxicity. Compounds 3c, 3a and 11c exhibited significant cytotoxicity towards A549 cells in the order of 3c (15.3 ± 0.7) > 3a (15.8 ± 0.1) > 11c (17.1 ± 0.2), whereas all the compounds show insignificant toxicity on normal human embryonic kidney cells up to a concentration of 200 µM. The best compounds among the series (3c and 11c) were chosen for further detection of apoptosis through fluorescence microscopic techniques using AO/EtBr and DAPI. The reduced DNA synthesis during the cell cycle was also investigated through flow cytometric techniques. The results indicate that the compounds possess significant anticancer properties due to the activation of the mitochondrial mediated intrinsic pathway.

8.
Mol Neurobiol ; 60(12): 6992-7008, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37523043

ABSTRACT

Parkinson's disease (PD) is an advancing age-associated progressive brain disorder which has various diverse factors, among them mitochondrial dysfunction involves in dopaminergic (DA) degeneration. Aging causes a rise in mitochondrial abnormalities which leads to structural and functional modifications in neuronal activity and cell death in PD. This ends in deterioration of mitochondrial function, mitochondrial alterations, mitochondrial DNA copy number (mtDNA CN) and oxidative phosphorylation (OXPHOS) capacity. mtDNA levels or mtDNA CN in PD have reported that mtDNA depletion would be a predisposing factor in PD pathogenesis. To maintain the mtDNA levels, therapeutic approaches have been focused on mitochondrial biogenesis in PD. The depletion of mtDNA levels in PD can be influenced by autophagic dysregulation, apoptosis, neuroinflammation, oxidative stress, sirtuins, and calcium homeostasis. The current review describes the regulation of mtDNA levels and discusses the plausible molecular pathways in mtDNA CN depletion in PD pathogenesis. We conclude by suggesting further research on mtDNA depletion which might show a promising effect in predicting and diagnosing PD.


Subject(s)
DNA, Mitochondrial , Parkinson Disease , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Parkinson Disease/genetics , Parkinson Disease/therapy , Parkinson Disease/metabolism , DNA Copy Number Variations/genetics , Mitochondria/metabolism , Neurons/metabolism
10.
Sci Total Environ ; 882: 163483, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37075992

ABSTRACT

Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.


Subject(s)
Histones , Neoplasms , Humans , Chromium/toxicity , Epigenesis, Genetic , Neoplasms/chemically induced
11.
J Mol Neurosci ; 73(4-5): 214-224, 2023 May.
Article in English | MEDLINE | ID: mdl-36930427

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disability that causes social impairment, debilitated verbal or nonverbal conversation, and restricted/repeated behavior. Recent research reveals that mitochondrial dysfunction and oxidative stress might play a pivotal role in ASD condition. The goal of this case-control study was to investigate oxidative stress and related alterations in ASD patients. In addition, the impact of mitochondrial DNA (mtDNA) mutations, particularly MT-ATP6, and its link with oxidative stress in ASD was studied. We found that ASD patient's plasma had lower superoxide dismutase (SOD) and higher catalase (CAT) activity, resulting in lower SOD/CAT ratio. MT-ATP6 mutation analysis revealed that four variations, 8865 G>A, 8684 C>T, 8697 G>A, and 8836 A>G, have a frequency of more than 10% with missense and synonymous (silent) mutations. It was observed that abnormalities in mitochondrial complexes (I, III, V) are more common in ASD, and it may have resulted in MT-ATP6 changes or vice versa. In conclusion, our findings authenticate that oxidative stress and genetics both have an equal and potential role behind ASD and we recommend to conduct more such concurrent research to understand their unique mechanism for better diagnosis and therapeutic for ASD.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Case-Control Studies , India , DNA, Mitochondrial/genetics , Oxidative Stress , Antioxidants , Superoxide Dismutase , Mitochondrial Proton-Translocating ATPases/genetics
12.
J Cell Physiol ; 238(2): 329-354, 2023 02.
Article in English | MEDLINE | ID: mdl-36502506

ABSTRACT

Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.


Subject(s)
MicroRNAs , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Dopaminergic Neurons/metabolism , MicroRNAs/genetics , Parkinson Disease/metabolism , Precision Medicine , Animals
13.
Ecotoxicol Environ Saf ; 243: 113972, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36029574

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder which mainly targets motor symptoms such as tremor, rigidity, bradykinesia and postural instability. The physiological changes occur due to dopamine depletion in basal ganglia region of the brain. PD aetiology is not yet elucidated clearly but genetic and environmental factors play a prominent role in disease occurrence. Despite of various environmental factors, pesticides exposure has been convicted as major candidate in PD pathogenesis. Among various pesticides 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely investigated in PD following with paraquat (PQ), maneb (MB), organochlorines (OC) and rotenone. Effect of these pesticides has been suggested to be involved in oxidative stress, alterations in dopamine transporters, mitochondrial dysfunction, α-synuclein (αSyn) fibrillation, and neuroinflammation in PD. The present review discusses the influence of pesticides in neurodegeneration and its related epidemiological studies conducted in PD. Furthermore, we have deliberated the common pesticides involved in PD and its associated genetic alterations and the probable mechanism of them behind PD pathogenesis. Hence, we conclude that pesticides play a prominent role in PD pathogenesis and advance research is needed to investigate the alterations in genetic and mechanistic aspects of PD.


Subject(s)
Maneb , Neurotoxicity Syndromes , Parkinson Disease , Pesticides , Dopamine , Humans , Maneb/toxicity , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Paraquat/toxicity , Parkinson Disease/genetics , Parkinson Disease/pathology , Pesticides/toxicity
14.
J Mol Neurosci ; 72(8): 1724-1737, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35676593

ABSTRACT

Parkinson's disease (PD) is an ageing disorder caused by dopaminergic neuron depletion with age. Growing research in the field of metabolomics is expected to play a major role in PD diagnosis, prognosis and therapeutic development. In this study, we looked at how SNCA and GBA1 gene mutations, as well as metabolomic abnormalities of kynurenine and cholesterol metabolites, were linked to alpha-synuclein (α-syn) and clinical characteristics in three different PD age groups. In all three age groups, a metabolomics analysis revealed an increased amount of 27-hydroxycholesterol (27-OHC) and a lower level of kynurenic acid (KYNA). The effect of 27-OHC on SNCA and GBA1 modifications was shown to be significant (P < 0.05) only in the A53T variant of the SNCA gene in late-onset and early-onset PD groups, whereas GBA1 variants were not. Based on the findings, we observed that the increase in 27-OHC would have elevated α-syn expression, which triggered the changes in the SNCA gene but not in the GBA1 gene. Missense variations in the SNCA and GBA1 genes were investigated using the sequencing technique. SNCA mutation A53T has been linked to increased PD symptoms, but there is no phenotypic link between GBA1 and PD. As a result of the data, we hypothesise that cholesterol and kynurenine metabolites play an important role in PD, with the metabolite 27-OHC potentially serving as a PD biomarker. These findings will aid in the investigation of pathogenic causes as well as the development of therapeutic and preventative measures for PD.


Subject(s)
Parkinson Disease , Dopaminergic Neurons/metabolism , Humans , India , Kynurenine/genetics , Kynurenine/metabolism , Kynurenine/therapeutic use , Mutation , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
15.
Chemosphere ; 301: 134625, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35439490

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative condition characterized by the dopamine (DA) neuronal loss in the substantia nigra. PD impairs motor controls symptoms such as tremor, rigidity, bradykinesia and postural imbalance gradually along with non-motor problems such as olfactory dysfunction, constipation, sleeping disorder. Though surplus of factors and mechanisms have been recognized, the precise PD etiopathogenesis is not yet implied. Reports suggest that various environmental factors play a crucial role in the causality of the PD cases. Epidemiological studies have reported that heavy metals has a role in causing defects in substantia nigra region of brain in PD. Though the reason is unknown, exposure to heavy metals is reported to be an underlying factor in PD development. Metals are classified as either essential or non-essential, and they have a role in physiological processes such protein modification, electron transport, oxygen transport, redox reactions, and cell adhesion. Excessive metal levels cause oxidative stress, protein misfolding, mitochondrial malfunction, autophagy dysregulation, and apoptosis, among other things. In this review, we check out the link between heavy metals like copper (Cu), arsenic (As), cadmium (Cd), iron (Fe), and lithium (Li) in neurodegeneration, and how it impacts the pathological conditions of PD. In conclusion, increase or decrease in heavy metals involve in regulation of neuronal functions that have an impact on neurodegeneration process. Through this review, we suggest that more research is needed in this stream to bring more novel approaches for either disease modelling or therapeutics.


Subject(s)
Arsenic , Metals, Heavy , Neurotoxicity Syndromes , Parkinson Disease , Arsenic/toxicity , Cadmium , Copper , Humans , Iron/metabolism , Lithium , Metals, Heavy/toxicity
16.
J Clin Neurosci ; 99: 169-189, 2022 May.
Article in English | MEDLINE | ID: mdl-35286970

ABSTRACT

Autism spectrum disorder (ASD) is a serious multifactorial neurodevelopmental disorder often accompanied by strained social communication, repetitive behaviour, immune dysregulation, and gastrointestinal (GI) issues. Recent studies have recorded a link between dysbiosis in the gut microbiota (gm) and the primary stages of ASD. A bidirectional connection (also called microbiota-gut-brain-axis) exchanges information between the gut bacteria and central nervous system. When the homeostasis of the microenvironment of the gut is dysregulated, it causes oxidative stress, affecting neuronal cells and neurotransmitters, thereby causing neurodevelopmental disorders. Studies have confirmed a difference in the constitution of gut bacteria among ASD cases and their controls. Numerous studies on animal models of ASD have shown altered gm and its association with abnormal metabolite profile and altered behaviour phenotype. This process happens due to an abnormal metabolite production in gm, leading to changes in the immune system, especially in ASD. Hence, this review aims to question the current knowledge on gm dysbiosis and its related GI discomforts and ASD behavioural symptoms and shed light on the possible therapeutic approaches available to deal with this situation. Thereby, though it is understood that more research might be needed to prove an association or causal relationship between gm and ASD, therapy with the microbiome may also be considered as an effective strategy to combat this issue.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Animals , Anxiety , Autism Spectrum Disorder/therapy , Brain-Gut Axis , Dysbiosis/complications , Humans
17.
Environ Res ; 201: 111643, 2021 10.
Article in English | MEDLINE | ID: mdl-34237335

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) still remains on an upsurge trend. The second wave of this disease has led to panic in many countries, including India and some parts of the world suffering from the third wave. As there are no proper treatment options or remedies available for this deadly infection, supportive care equipment's such as oxygen cylinders, ventilators and heavy use of steroids play a vital role in the management of COVID-19. In the midst of this pandemic, the COVID-19 patients are acquiring secondary infections such as mucormycosis also known as black fungus disease. Mucormycosis is a serious, but rare opportunistic fungal infection that spreads rapidly, and hence prompt diagnosis and treatment are necessary to avoid high rate of mortality and morbidity rates. Mucormycosis is caused by the inhalation of its filamentous (hyphal form) fungi especially in the patients who are immunosuppressed. Recent studies have documented alarming number of COVID-19 patients with mucormycosis infection. Most of these patients had diabetes and were administered steroids for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and were consequently more prone to mucormycosis. Hence, the present review emphasizes mucormycosis and its related conditions, its mechanism in normal and COVID-19 affected individuals, influencing factors and challenges to overcome this black mold infection. Early identification and further investigation of this fungus will significantly reduce the severity of the disease and mortality rate in COVID-19 affected patients.


Subject(s)
COVID-19 , Mucormycosis , Humans , Mucormycosis/epidemiology , Mucormycosis/therapy , Pandemics , Risk Assessment , SARS-CoV-2
18.
Environ Res ; 197: 111015, 2021 06.
Article in English | MEDLINE | ID: mdl-33775678

ABSTRACT

The advent of COVID-19 has kept the whole world on their toes. Countries are maximizing their efforts to combat the virus and to minimize the infection. Since infectious microorganisms may be transmitted by variety of routes, respiratory and facial protection is required for those that are usually transmitted via droplets/aerosols. Therefore this pandemic has caused a sudden increase in the demand for personal protective equipment (PPE) such as gloves, masks, and many other important items since, the evidence of individual-to-individual transmission (through respiratory droplets/coughing) and secondary infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). But the disposal of these personal protective measures remains a huge question mark towards the environmental impact. Huge waste generation demands proper segregation according to waste types, collection, and recycling to minimize the risk of infection spread through aerosols and attempts to implement measures to monitor infections. Hence, this review focuses on the impact of environment due to improper disposal of these personal protective measures and to investigate the safe disposal methods for these protective measures by using the safe, secure and innovative biological methods such as the use of Artificial Intelligence (AI) and Ultraviolet (UV) lights for killing such deadly viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Artificial Intelligence , Humans , Pandemics , Personal Protective Equipment , Solid Waste
19.
eNeurologicalSci ; 21: 100270, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33134567

ABSTRACT

Parkinson's disease (PD) is a complex multi-factorial neurodegenerative disorder where various altered metabolic pathways contribute to the progression of the disease. Tryptophan (TRP) is a major precursor in kynurenine pathway (KP) and it has been discussed in various in vitro studies that the metabolites quinolinic acid (QUIN) causes neurotoxicity and kynurenic acid (KYNA) acts as neuroprotectant respectively. More studies are also focused on the effects of other KP metabolites and its enzymes as it has an association with ageing and PD pathogenesis. Until now, very few studies have targeted the role of genetic mutations in abnormal KP metabolism in adverse conditions of PD. Therefore, the present review gives an updated research studies on KP in connection with PD. Moreover, the review emphasizes on the urge for the development of biomarkers and also this would be an initiative in generating an alternative therapeutic approach for PD.

20.
Curr Opin Environ Sci Health ; 17: 72-81, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33015428

ABSTRACT

Coronavirus disease 2019 (COVID-19) has grown to be global public health emergency. The biosurfactants (BSs) are surface-active biomolecules with unique properties and wide applications. Several microbes synthesize secondary metabolites with surface-active properties, which have a wide range of anti-inflammatory and anti-viral roles. The monocytes and neutrophils are activated by bacteria, which subsequently result in high secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-12, Il-18 and IL-1ß) and toll-like receptors-2 (TLR-2). Following the inflammatory response, BSs induce the production of cationic proteins, reactive oxygen species (ROS) and lysozyme, and thus can be used for therapeutic purposes. This article provides recent advances in the anti-inflammatory and antiviral activities of BSs and discusses the potential use of these compounds against COVID-19, highlighting the need for in-vitro and in-vivo approaches to confirm this hypothesis. This suggestion is necessary because there are still no studies that have focused on the use of BSs against COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...