Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; : e2409976, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108189

ABSTRACT

Rechargeable sodium metal batteries are considered to be one of the most promising high energy density and cost-effective electrochemical energy storage systems. However, their practicality is constrained by the high reactivity of sodium metal anodes that readily brings about excessive accumulation of inactive Na species on the surface, either by chemical reactions with oxygen and moisture during electrode handling or through electrochemical processes with electrolytes during battery operation. Herein, this paper reports on an alkali, salt-assisted, assembly-polymerization strategy to recover Na activity and to reinforce the solid-electrolyte interphase (SEI) of sodium metal anodes. To achieve this, an alkali-reactive coupling agent 3-glycidoxypropyltrimethoxysilane (GPTMS) is applied to convert inactive Na species into Si-O-Na coordination with a self-assembly GPTMS layer that consists of inner O-Si-O networks and outer hydrophobic epoxides. As a result, the electrochemical activity of Na metal anodes can be fully recovered and the robust GPTMS-derived SEI layer ensures high capacity and long-term cycling under an ultrahigh rate of 30 C (93.1 mAh g-1, 94.8% after 3000 cycles). This novel process provides surface engineering clues on designing high power density and cost-effective alkaline metal batteries.

2.
Sci Bull (Beijing) ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39054159

ABSTRACT

Host-less lithium metal anode generally suffers from large volume changes and serious dendrite growth during cycling, which poses challenges for its practical application. Interpenetrating phase composites with continuous architectures offer a solution to enhance mechanical properties of materials. Herein, a robust composite Li anode (LBN) material is fabricated through the metallurgical reaction between Li and hexagonal boron nitride (h-BN) with the formation of interpenetrating LiB/Li3BN2 phases. As LiB fibers are anchored by Li3BN2 granules, the collapse and slippage of LiB fibers are suppressed whilst the mechanical strength and structural stability of LBN are reinforced. By rolling, ultrathin (15 µm), freestanding, and electrochemically stable LBN foil can be obtained. The LBN anode exhibits a high average Coulombic efficiency of 99.69% (1 mA cm-2, 3 mAh cm-2) and a long lifespan of 2500 h (1 mA cm-2, 1 mAh cm-2). Notably, the LiCoO2 (with double-sided load 40 mg cm-2)|LBN pouch cell can operate over 450 cycles with a capacity retention of 90.1%. The exceptional cycling stability of LBN can be ascribed to the interpenetrating reinforcement architectures and synergistic electronic/ionic conductivity of the LiB/Li3BN2 dual-lithiophilic-phases. This work provides a new methodology for thin Li strip processing and reinforced-architecture design, with implications beyond battery applications.

3.
Angew Chem Int Ed Engl ; 63(26): e202405426, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38641686

ABSTRACT

Inspired by dative boron-nitrogen (B←N) bonds proven to be the promising dynamic linkage for the construction of crystalline covalent organic polymers/frameworks (COPs/COFs), we employed 1,4-bis(benzodioxaborole) benzene (BACT) and N,N'-Di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxdiimide (DPNTCDI) as the corresponding building blocks to construct a functional COP (named as CityU-25), which had been employed as an anode in rechargeable lithium ion batteries. CityU-25 displayed an excellent reversible lithium storage capability of 455 mAh/g after 170 cycles at 0.1 A/g, and an impressive one of 673 mAh/g after 720 cycles at 0.5 A/g. These findings suggest that CityU-25 is a standout candidate for advanced battery technologies, highlighting the potential application of this type of materials.

4.
ChemSusChem ; 17(2): e202301228, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37718309

ABSTRACT

The practical implementation of the lithium metal anode (LMA) has long been pursued due to its extremely high specific capacity and low electrochemical equilibrium potential. However, the unstable interfaces resulting from lithium ultrahigh reactivity have significantly hindered the use of LMA. This instability directly leads to dendrite growth behavior, dead lithium, low Coulombic efficiency, and even safety concerns. Therefore, artificial solid electrolyte interfaces (ASEI) with enhanced physicochemical and electrochemistry properties have been explored to stabilize LMA. Polymer materials, with their flexible structures and multiple functional groups, offer a promising way for structurally designing ASEIs to address the challenges faced by LMA. This Concept demonstrates an overview of polymer ASEIs with different functionalities, such as providing uniform lithium ion and single-ion transportation, inhibiting side reactions, possessing self-healing ability, and improving air stability. Furthermore, challenges and prospects for the future application of polymeric ASEIs in commercial lithium metal batteries (LMBs) are also discussed.

5.
ACS Nano ; 17(20): 20315-20324, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37787661

ABSTRACT

The development of lithium (Li) metal batteries (LMBs) has been limited by problems, such as severe dendrite growth, drastic interfacial reactions, and large volume change. Herein, an LMB (8AP@LiB) combining agraphene oxide-poly(ethylene oxide) (PEO) functionalized polypropylene separator (8AP) with a lithium-boron (LiB) anode is designed to overcome these problems. Raman results demonstrate that the PEO chain on 8AP can influence the Li+ solvation structure in the electrolyte, resulting in Li+ homogeneous diffusion and Li+ deposition barrier reduction. 8AP exhibits good ionic conductivity (4.9 × 10-4 S cm-1), a high Li+ migration number (0.88), and a significant electrolyte uptake (293%). The 3D LiB skeleton can significantly reduce the anode volume changes and local current density during the charging/discharging process. Therefore, 8AP@LiB effectively regulates the Li+ flux and promotes the uniform Li deposition without dendrites. The Li||Li symmetrical cells of 8AP@LiB exhibit a high electrochemical stability of up to 1000 h at 1 mA cm-2 and 5 mAh cm-2. Importantly, the Li||LiFePO4 full cells of 8AP@LiB achieve an impressive 2000 cycles at 2C, while maintaining a high-capacity retention of 86%. The synergistic effect of the functionalized separator and LiB anode might provide a direction for the development of high-performance LMBs.

6.
Nanomicro Lett ; 15(1): 235, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874415

ABSTRACT

The practical application of Li metal anodes (LMAs) is limited by uncontrolled dendrite growth and side reactions. Herein, we propose a new friction-induced strategy to produce high-performance thin Li anode (Li@CFO). By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling, a robust organic/inorganic hybrid interlayer (lithiophilic LiF/LiC6 framework hybridized -CF2-O-CF2- chains) was formed atop Li metal. The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface. The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h (1.0 mA cm-2 and 1.0 mAh cm-2) and 1,350 cycles even at a harsh condition (18.0 mA cm-2 and 3.0 mAh cm-2). When paired with high-loading LiFePO4 cathodes, the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%. This work provides a new friction-induced strategy for producing high-performance thin LMAs.

7.
Angew Chem Int Ed Engl ; 62(26): e202305287, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37118881

ABSTRACT

Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm-2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.


Subject(s)
Lithium , Metals , Electrolytes , Carboxylic Acids , Ethers, Cyclic , Polymers
8.
Adv Mater ; 35(15): e2211203, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36704837

ABSTRACT

Lithium metal is a promising anode for high-energy-density lithium batteries, but its practical application is still hindered by intrinsic defects such as infinite volume expansion and uncontrollable dendrite growth. Herein, a dendrite-free 3D composite Li anode (Li-B@SSM) is prepared by mechanical rolling of lithiophilic LiB nanofibers supported by Li-B composite and lithiophobic stainless-steel mesh (SSM). Featuring hierarchical lithiophilic-lithiophobic dual-skeletons, the Li-B@SSM anode shows an ultrahigh Coulombic efficiency of 99.95% and a long lifespan of 900 h under 2 mA cm-2 /1 mAh cm-2 . It is demonstrated that the abnormally reversible Li stripping/plating processes should be closely related to the site-selective plating behavior and spatial confinement effect induced by the robust lithiophilic-lithiophobic dual-skeletons, which alleviates the volume changes, suppresses the growth of Li dendrites, and reduces the accumulation of "dead" Li. More importantly, the application feasibility of the Li-B@SSM anode is also confirmed in full batteries, of which the Li-B@SSM|LiFePO4 full cell shows a high capacity retention of 97.5% after 400 cycles while the Li-B@SSM|S pouch battery exhibits good cycle stability even under practically harsh conditions. This work paves the way for the facile and efficient fabrication of high-efficiency Li metal anodes toward practical applications.

9.
ACS Nano ; 15(1): 210-239, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33405889

ABSTRACT

Owing to the energy crisis and environmental pollution, developing efficient and robust electrochemical energy storage (or conversion) systems is urgently needed but still very challenging. Next-generation electrochemical energy storage and conversion devices, mainly including fuel cells, metal-air batteries, metal-sulfur batteries, and metal-ion batteries, have been viewed as promising candidates for future large-scale energy applications. All these systems are operated through one type of chemical conversion mechanism, which is currently limited by poor reaction kinetics. Single atom catalysts (SACs) perform maximum atom efficiency and well-defined active sites. They have been employed as electrode components to enhance the redox kinetics and adjust the interactions at the reaction interface, boosting device performance. In this Review, we briefly summarize the related background knowledge, motivation and working principle toward next-generation electrochemical energy storage (or conversion) devices, including fuel cells, Zn-air batteries, Al-air batteries, Li-air batteries, Li-CO2 batteries, Li-S batteries, and Na-S batteries. While pointing out the remaining challenges in each system, we clarify the importance of SACs to solve these development bottlenecks. Then, we further explore the working principle and current progress of SACs in various device systems. Finally, future opportunities and perspectives of SACs in next-generation electrochemical energy storage and conversion devices are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL