Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
NPJ Parkinsons Dis ; 10(1): 138, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069518

ABSTRACT

Previous studies have shown that aggregated alpha-synuclein (α-s) protein, a key pathological marker of Parkinson's disease (PD), can propagate between cells, thus participating in disease progression. This prion-like propagation has been widely studied using in vivo and in vitro models, including rodent and human cell cultures. In this study, our focus was on temporal assessment of functional changes during α-s aggregation and propagation in human induced pluripotent stem cell (hiPSC)-derived neuronal cultures and in engineered networks. Here, we report an engineered circular tripartite human neuronal network model in a microfluidic chip integrated with microelectrode arrays (MEAs) as a platform to study functional markers during α-s aggregation and propagation. We observed progressive aggregation of α-s in conventional neuronal cultures and in the exposed (proximal) compartments of circular tripartite networks following exposure to preformed α-s fibrils (PFF). Furthermore, aggregated forms propagated to distal compartments of the circular tripartite networks through axonal transport. We observed impacts of α-s aggregation on both the structure and function of neuronal cells, such as in presynaptic proteins, mitochondrial motility, calcium oscillations and neuronal activity. The model enabled an assessment of the early, middle, and late phases of α-s aggregation and its propagation during a 13-day follow-up period. While our temporal analysis suggested a complex interplay of structural and functional changes during the in vitro propagation of α-s aggregates, further investigation is required to elucidate the underlying mechanisms. Taken together, this study demonstrates the technical potential of our introduced model for conducting in-depth analyses for revealing such mechanisms.

2.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39079743

ABSTRACT

Brain activity implies the orchestrated functioning of interconnected brain regions. Typical in vitro models aim to mimic the brain using single human pluripotent stem cell-derived neuronal networks. However, the field is constantly evolving to model brain functions more accurately through the use of new paradigms, e.g., brain-on-a-chip models with compartmentalized structures and integrated sensors. These methods create novel data requiring more complex analysis approaches. The previously introduced circular tripartite network concept models the connectivity between spatially diverse neuronal structures. The model consists of a microfluidic device allowing axonal connectivity between separated neuronal networks with an embedded microelectrode array to record both local and global electrophysiological activity patterns in the closed circuitry. The existing tools are suboptimal for the analysis of the data produced with this model. Here, we introduce advanced tools for synchronization and functional connectivity assessment. We used our custom-designed analysis to assess the interrelations between the kainic acid (KA)-exposed proximal compartment and its nonexposed distal neighbors before and after KA. Novel multilevel circuitry bursting patterns were detected and analyzed in parallel with the inter- and intracompartmental functional connectivity. The effect of KA on the proximal compartment was captured, and the spread of this effect to the nonexposed distal compartments was revealed. KA induced divergent changes in bursting behaviors, which may be explained by distinct baseline activity and varied intra- and intercompartmental connectivity strengths. The circular tripartite network concept combined with our developed analysis advances importantly both face and construct validity in modeling human epilepsy in vitro.


Subject(s)
Kainic Acid , Nerve Net , Kainic Acid/pharmacology , Nerve Net/drug effects , Nerve Net/physiology , Models, Neurological , Animals , Excitatory Amino Acid Agonists/pharmacology , Humans , Neurons/drug effects , Neurons/physiology , Action Potentials/drug effects , Action Potentials/physiology , Lab-On-A-Chip Devices
3.
Cell Commun Signal ; 21(1): 132, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316873

ABSTRACT

BACKGROUND: Neuronal networks receive and deliver information to regulate bodily functions while the vascular network provides oxygen, nutrients, and signaling molecules to tissues. Neurovascular interactions are vital for both tissue development and maintaining homeostasis in adulthood; these two network systems align and reciprocally communicate with one another. Although communication between network systems has been acknowledged, the lack of relevant in vitro models has hindered research at the mechanistic level. For example, the current used in vitro neurovascular models are typically established to be short-term (≤ 7 days) culture models, and they miss the supporting vascular mural cells. METHODS: In this study, we utilized human induced pluripotent stem cell (hiPSC) -derived neurons, fluorescence tagged human umbilical vein endothelial cells (HUVECs), and either human bone marrow or adipose stem/stromal cells (BMSCs or ASCs) as the mural cell types to create a novel 3D neurovascular network-on-a-chip model. Collagen 1-fibrin matrix was used to establish long-term (≥ 14 days) 3D cell culture in a perfusable microphysiological environment. RESULTS: Aprotinin-supplemented endothelial cell growth medium-2 (EGM-2) supported the simultaneous formation of neuronal networks, vascular structures, mural cell differentiation, and the stability of the 3D matrix. The formed neuronal and vascular networks were morphologically and functionally characterized. Neuronal networks supported vasculature formation based on direct cell contacts and by dramatically increasing the secretion of angiogenesis-related factors in multicultures in contrast to cocultures without neurons. Both utilized mural cell types supported the formation of neurovascular networks; however, the BMSCs seemed to boost neurovascular networks to greater extent. CONCLUSIONS: Overall, our study provides a novel human neurovascular network model that is applicable for creating in vivo-like tissue models with intrinsic neurovascular interactions. The 3D neurovascular network model on chip forms an initial platform for the development of vascularized and innervated organ-on-chip and further body-on-chip concepts and offers the possibility for mechanistic studies on neurovascular communication both under healthy and in disease conditions. Video Abstract.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Homeostasis , Cell Differentiation , Human Umbilical Vein Endothelial Cells , Lab-On-A-Chip Devices
4.
Biofabrication ; 15(1)2022 12 29.
Article in English | MEDLINE | ID: mdl-36579828

ABSTRACT

Corneal transplantation remains gold standard for the treatment of severe cornea diseases, however, scarcity of donor cornea is a serious bottleneck. 3D bioprinting holds tremendous potential for cornea tissue engineering (TE). One of the key technological challenges is to design bioink compositions with ideal printability and cytocompatibility. Photo-crosslinking and ionic crosslinking are often used for the stabilization of 3D bioprinted structures, which can possess limitations on biological functionality of the printed cells. Here, we developed a hyaluronic acid-based dopamine containing bioink using hydrazone crosslinking chemistry for the 3D bioprinting of corneal equivalents. First, the shear thinning property, viscosity, and mechanical stability of the bioink were optimized before extrusion-based 3D bioprinting for the shape fidelity and self-healing property characterizations. Subsequently, human adipose stem cells (hASCs) and hASC-derived corneal stromal keratocytes were used for bioprinting corneal stroma structures and their cell viability, proliferation, microstructure and expression of key proteins (lumican, vimentin, connexin 43,α-smooth muscle actin) were evaluated. Moreover, 3D bioprinted stromal structures were implanted intoex vivoporcine cornea to explore tissue integration. Finally, human pluripotent stem cell derived neurons (hPSC-neurons), were 3D bioprinted to the periphery of the corneal structures to analyze innervation. The bioink showed excellent shear thinning property, viscosity, printability, shape fidelity and self-healing properties with high cytocompatibility. Cells in the printed structures displayed good tissue formation and 3D bioprinted cornea structures demonstrated excellentex vivointegration to host tissue as well asin vitroinnervation. The developed bioink and the printed cornea stromal equivalents hold great potential for cornea TE applications.


Subject(s)
Bioprinting , Corneal Stroma , Humans , Hyaluronic Acid/chemistry , Tissue Engineering , Stem Cells , Printing, Three-Dimensional , Tissue Scaffolds/chemistry
5.
Eur J Cell Biol ; 101(4): 151270, 2022.
Article in English | MEDLINE | ID: mdl-35987046

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) secreted by neuronal cells in vitro have promising therapeutic potential for brain diseases. Optimization of cell culture conditions and methodologies for high-yield isolation of EVs for preclinical and clinical applications, however, remains a challenge. OBJECTIVE: To probe the cell culture conditions required for optimal EV secretion by human-derived neuronal cells. METHODOLOGY: First, we optimized the EV purification protocol using human mesenchymal stromal cell (MSC) cultures. Next, we compared the effects of different variables in human pluripotent stem cell (hPSC)-derived neuronal cultures on EV secretion. EVs were isolated from cell conditioned media (CCM) and control media with no cells (NCC) using ultrafiltration combined with size-exclusion chromatography (SEC). The hPSC neurons were cultured in 2 different media from which EVs were collected at 2 maturation time-points (days 46 and 60). Stimulation with 25 mM KCl was also evaluated as an activator of EV secretion by neurons. The collected SEC fractions were analyzed by nanoparticle tracking analysis (NTA), protein concentration assay, and blinded transmission electron microscopy (TEM). RESULTS: A peak in cup-shaped particles was observed in SEC fractions 7-10 of MSC samples, but not corresponding media controls, indicating successful isolation of EVs. Culture medium had no significant effect on EV yield. The EV yield of the samples did not differ significantly according to the culture media used or the cell maturation time-points. Stimulation of neurons with KCl for 3 h reduced rather than increased the EV yield. CONCLUSIONS: We demonstrated successful EV isolation from MSC and neuronal cells using an ultrafiltration-SEC method. The EV yield from MSC and neuronal cultures exhibited a large batch effect, apparently related to the culture media used, highlighting the importance of including NCC as a negative control in all cell culture experiments.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Extracellular Vesicles/metabolism , Culture Media, Conditioned/pharmacology , Cell Differentiation , Cell Culture Techniques
6.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-35929583

ABSTRACT

To obtain commensurate numerical data of neuronal network morphology in vitro, network analysis needs to follow consistent guidelines. Important factors in successful analysis are sample uniformity, suitability of the analysis method for extracting relevant data and the use of established metrics. However, for the analysis of 3D neuronal cultures, there is little coherence in the analysis methods and metrics used in different studies. Here, we present a framework for the analysis of neuronal networks in 3D. First, we selected a hydrogel that supported the growth of human pluripotent stem cell-derived cortical neurons. Second, we tested and compared two software programs for tracing multi-neuron images in three dimensions and optimized a workflow for neuronal analysis using software that was considered highly suitable for this purpose. Third, as a proof of concept, we exposed 3D neuronal networks to oxygen-glucose deprivation- and ionomycin-induced damage and showed morphological differences between the damaged networks and control samples utilizing the proposed analysis workflow. With the optimized workflow, we present a protocol for preparing, challenging, imaging and analysing 3D human neuronal cultures.


Subject(s)
Neurons , Pluripotent Stem Cells , Humans , Software
7.
Stem Cell Res ; 63: 102865, 2022 08.
Article in English | MEDLINE | ID: mdl-35843021

ABSTRACT

Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system where the main pathogenetic events include demyelination and axonal degeneration. Here, we generated a human induced pluripotent stem cell (hiPSC) line from peripheral blood mononuclear cells of an MS patient utilizing Sendai virus reprogramming. The produced hiPSC line expressed pluripotency markers, differentiated into three germ layers, showed a normal karyotype and was free of virus vectors, transgenes and mycoplasma. Established hiPSCs are a valuable source for studies of MS disease modeling and drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Multiple Sclerosis , Cell Differentiation/physiology , Cell Line , Cellular Reprogramming , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Multiple Sclerosis/metabolism
9.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328569

ABSTRACT

The cardiac autonomic nervous system (cANS) regulates cardiac function by innervating cardiac tissue with axons, and cardiomyocytes (CMs) and neurons undergo comaturation during the heart innervation in embryogenesis. As cANS is essential for cardiac function, its dysfunctions might be fatal; therefore, cardiac innervation models for studying embryogenesis, cardiac diseases, and drug screening are needed. However, previously reported neuron-cardiomyocyte (CM) coculture chips lack studies of functional neuron-CM interactions with completely human-based cell models. Here, we present a novel completely human cell-based and electrophysiologically functional cardiac innervation on a chip in which a compartmentalized microfluidic device, a 3D3C chip, was used to coculture human induced pluripotent stem cell (hiPSC)-derived neurons and CMs. The 3D3C chip enabled the coculture of both cell types with their respective culture media in their own compartments while allowing the neuronal axons to traverse between the compartments via microtunnels connecting the compartments. Furthermore, the 3D3C chip allowed the use of diverse analysis methods, including immunocytochemistry, RT-qPCR and video microscopy. This system resembled the in vivo axon-mediated neuron-CM interaction. In this study, the evaluation of the CM beating response during chemical stimulation of neurons showed that hiPSC-neurons and hiPSC-CMs formed electrophysiologically functional axon-mediated interactions.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Axons , Humans , Microfluidics/methods , Myocytes, Cardiac/metabolism , Neurons/metabolism
10.
Sci Data ; 9(1): 120, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354837

ABSTRACT

We present a dataset of microelectrode array (MEA) recordings from human pluripotent stem cell (hPSC)-derived and rat embryonic cortical neurons during their in vitro maturation. The data were prepared to assess extracellularly recorded spontaneous activity and to compare the functional development of these neuronal networks. In addition to recordings of spontaneous activity, we provide pharmacological responses of hPSC-derived and rat cortical cultures at their mature stage. Together with the recorded electrode raw data, we share the analysis code to form a comprehensive dataset including spike times, spike waveforms, burst activity and network synchronization metrics calculated with two different connectivity estimators. Moreover, we provide the analysis code that produced the key scientific findings published previously with this dataset. This large dataset enables investigation of the functional aspects of maturing cortical neuronal networks and provides substantial parameters to assess the differences and similarities between hPSC-derived and rat cortical networks in vitro. This publicly available dataset will be beneficial, especially for experimental and computational neuroscientists.


Subject(s)
Neurons , Pluripotent Stem Cells , Animals , Humans , Microelectrodes , Rats
11.
Stem Cell Res ; 60: 102665, 2022 04.
Article in English | MEDLINE | ID: mdl-35091307

ABSTRACT

Human pluripotent stem cell (hPSC)-derived neural cultures have attracted interest for modeling epilepsy and seizure-like activity in vitro. Clinical and experimental evidence have shown that the multifunctional inflammatory cytokine interleukin (IL)-6 plays a significant role in epilepsy. However, the role of IL-6 in neuronal networks remains unclear. In this study, we modelled seizure-like activity in hPSC-derived cortical neurons using kainic acid (KA) and explored the effects of IL-6 and its counterpart, hyper-IL-6 (H-IL-6), a fusion protein consisting of IL-6 and its soluble receptor, IL-6R. In the seizure-like model, functionally mature neuronal networks responded to KA induction with an increased bursting phenotype at the single electrode level, while network level bursts decreased. The IL-6 receptors, IL6R and gp130, were expressed in hPSC-derived cortical neurons, and the gene expression of IL6R increased during maturation. Furthermore, the expression of IL-6R increased not only after IL-6 and H-IL-6 treatment but also after KA treatment. Stimulation with IL-6 or H-IL-6 was not toxic to the neurons and cytokine pretreatment did not independently modulate neuronal network activity or KA-induced seizures. Furthermore, the increased expression of IL-6R in response to IL-6, H-IL-6 and KA implies that neurons can respond through both classical and trans-signaling pathways. Acute treatment with IL-6 and H-IL-6 did not alter functional activity, suggesting that IL-6 does not affect the induction or modulation of newly induced seizures in healthy cultures. Overall, we propose this model as a useful tool to study seizure-like activity in neuronal networks in vitro.


Subject(s)
Epilepsy , Pluripotent Stem Cells , Cytokines/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Kainic Acid/metabolism , Kainic Acid/toxicity , Neurons/metabolism , Pluripotent Stem Cells/metabolism , Seizures/chemically induced
12.
Acta Biomater ; 140: 314-323, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34902615

ABSTRACT

Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin sulfate (HA-CS) composite gels showed that the CS component prevails as the predominant factor for the growth of neuronal cells, albeit to modest efficacy. Covalent grafting of dopamine (DA) moieties to the HA-CS gel (HADA-CS) enhanced the scaffold stability and stimulated the gel's remodeling properties by entrapping cell-secreted laminin, and binding brain-derived neurotrophic factor (BDNF). Neurons cultured in the scaffold expressed Col1, Col11, and ITGB4; important for cell adhesion and cell-ECM signaling. Thus, the HA-CS scaffold with integrated chemical cues (DA) supported neuronal growth and network formation. This scaffold offers a valuable tool for tissue engineering and disease modeling and helps in bridging the gap between animal models and human diseases by providing biomimetic neurophysiology. STATEMENT OF SIGNIFICANCE: Developing a brain mimetic 3D scaffold that supports neuronal growth could potentially be useful to study neurobiology, disease pathology, and disease modeling. However, culturing human induced pluripotent stem cells (hiPSC) and human embryonic stem cells (ESCs) derived neurons in a 3D matrix is extremely challenging as neurons are very sensitive cells and require tailored composition, viscoelasticity, and chemical cues. This article identified the key chemical cues necessary for designing neuronal matrix that trap the cell-produced ECM and neurotrophic factors and remodel the matrix and supports neurite outgrowth. The tailored injectable scaffold possesses self-healing/shear-thinning property which is useful to design injectable gels for regenerative medicine and disease modeling that provides biomimetic neurophysiology.


Subject(s)
Biomimetics , Induced Pluripotent Stem Cells , Animals , Brain , Extracellular Matrix/metabolism , Humans , Neurons , Tissue Scaffolds/chemistry
13.
J Neurosci Methods ; 350: 109043, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33345946

ABSTRACT

BACKGROUND: Three-dimensional (3D) in vitro models have been developed into more in vivo resembling structures. In particular, there is a need for human-based models for neuronal tissue engineering (TE). To produce such a model with organized microenvironment for cells in central nervous system (CNS), a 3D layered scaffold composed of hydrogel and cell guiding fibers has been proposed. NEW METHOD: Here, we describe a novel method for producing a layered 3D scaffold consisting of electrospun poly (L,D-lactide) fibers embedded into collagen 1 hydrogel to achieve better resemblance of cells' natural microenvironment for human pluripotent stem cell (hPSC)-derived neurons. The scaffold was constructed via a single layer-by-layer process using an electrospinning technique with a unique collector design. RESULTS: The method enabled the production of layered 3D cell-containing scaffold in a single process. HPSC-derived neurons were found in all layers of the scaffold and exhibited a typical neuronal phenotype. The guiding fiber layers supported the directed cell growth and extension of the neurites inside the scaffold without additional functionalization. COMPARISON WITH EXISTING METHODS: Previous methods have required several process steps to construct 3D layer-by-layer scaffolds. CONCLUSIONS: We introduced a method to produce layered 3D scaffolds to mimic the cell guiding cues in CNS by alternating the soft hydrogel matrix and fibrous guidance cues. The produced scaffold successfully enabled the long-term culture of hPSC-derived neuronal cells. This layered 3D scaffold is a useful model for in vitro and in vivo neuronal TE applications.


Subject(s)
Pluripotent Stem Cells , Tissue Scaffolds , Humans , Hydrogels , Neurons , Tissue Engineering
14.
Stem Cells Int ; 2020: 8841026, 2020.
Article in English | MEDLINE | ID: mdl-33178286

ABSTRACT

Stroke is a devastating neurological disorder and one of the leading causes of mortality and disability. To understand the cellular and molecular mechanisms of stroke and to develop novel therapeutic approaches, two different in vitro human cell-based stroke models were established using oxygen-glucose deprivation (OGD) conditions. In addition, the effect of adipose stem cells (ASCs) on OGD-induced injury was studied. In the present study, SH-SY5Y human neuroblastoma cells and human induced pluripotent stem cells (hiPSCs) were differentiated into neurons, cultured under OGD conditions (1% O2) for 24 h, and subjected to a reperfusion period for 24 or 72 h. After OGD, ASCs were cocultured with neurons on inserts for 24 or 72 h to study the neuroprotective potential of ASCs. The effect of OGD and ASC coculture on the viability, apoptosis, and proliferation of and axonal damage to neuronal cells was studied. The results showed that OGD conditions induced cytotoxicity and apoptosis of SH-SY5Y- and hiPSC-derived neurons, although more severe damage was detected in SH-SY5Y-derived neurons than in hiPSC-derived neurons. Coculture with ASCs was protective for neurons, as the number of dead ASC-cocultured neurons was lower than that of control cells, and coculture increased the proliferation of both cell types. To conclude, we developed in vitro human cell-based stroke models in SH-SY5Y- and hiPSC-derived neurons. This was the first time hiPSCs were used to model stroke in vitro. Since OGD had different effects on the studied cell types, this study highlights the importance of using several cell types in in vitro studies to confirm the outcomes of the study. Here, ASCs exerted a neuroprotective effect by increasing the proliferation and decreasing the death of SH-SY5Y- and hiPSC-derived neurons after OGD.

15.
Biosens Bioelectron ; 168: 112553, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32877779

ABSTRACT

Epilepsies are a group of neurological disorders characterised by recurrent epileptic seizures. Seizures, defined as abnormal transient discharges of neuronal activity, can affect the entire brain circuitry or remain more focal in the specific brain regions and neuronal networks. Human pluripotent stem cell (hPSC)-derived neurons are a promising option for modelling epilepsies, but as such, they do not model groups of connected neuronal networks or focal seizures. Our solution is a Modular Platform for Epilepsy Modelling In Vitro (MEMO), a lab-on-chip device, in which three hPSC-derived networks are separated by a novel microfluidic cell culture device that allows controlled network-to-network axonal connections through microtunnels. In this study, we show that the neuronal networks formed a functional circuitry that was successfully cultured in MEMO for up to 98 days. The spontaneous neuronal network activities were monitored with an integrated custom-made microelectrode array (MEA). The networks developed spontaneous burst activity that was synchronous both within and between the axonally connected networks, i.e. mimicking both local and circuitry functionality of the brain. A convulsant, kainic acid, increased bursts only in the specifically treated networks. The activity reduction by an anticonvulsant, phenytoin, was also localised to treated networks. Therefore, modelling focal seizures in human neuronal networks is now possible with the developed chip.


Subject(s)
Biosensing Techniques , Epilepsy , Brain , Humans , Lab-On-A-Chip Devices , Nerve Net , Neurons , Seizures
16.
Biomed Microdevices ; 22(2): 41, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32494857

ABSTRACT

Luminescence-based oxygen sensing is a widely used tool in cell culture applications. In a typical configuration, the luminescent oxygen indicators are embedded in a solid, oxygen-permeable matrix in contact with the culture medium. However, in sensitive cell cultures even minimal leaching of the potentially cytotoxic indicators can become an issue. One way to prevent the leaching is to immobilize the indicators covalently into the supporting matrix. In this paper, we report on a method where platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin (PtTFPP) oxygen indicators are covalently immobilized into a polymer matrix consisting of polystyrene and poly(pentafluorostyrene). We study how the covalent immobilization influences the sensing material's cytotoxicity to human induced pluripotent stem cell-derived (hiPSC-derived) neurons and cardiomyocytes (CMs) through 7-13 days culturing experiments and various viability analyses. Furthermore, we study the effect of the covalent immobilization on the indicator leaching and the oxygen sensing properties of the material. In addition, we demonstrate the use of the covalently linked oxygen sensing material in real time oxygen tension monitoring in functional hypoxia studies of the hiPSC-derived CMs. The results show that the covalently immobilized indicators substantially reduce indicator leaching and the cytotoxicity of the oxygen sensing material, while the influence on the oxygen sensing properties remains small or nonexistent.


Subject(s)
Luminescent Agents/chemistry , Luminescent Agents/toxicity , Oxygen/analysis , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Neurons/cytology , Neurons/drug effects , Porphyrins/chemistry
17.
Micromachines (Basel) ; 11(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423145

ABSTRACT

Microelectrode array (MEA) is a tool used for recording bioelectric signals from electrically active cells in vitro. In this paper, ion beam assisted electron beam deposition (IBAD) has been used for depositing indium tin oxide (ITO) and titanium nitride (TiN) thin films which are applied as transparent track and electrode materials in MEAs. In the first version, both tracks and electrodes were made of ITO to guarantee full transparency and thus optimal imaging capability. In the second version, very thin (20 nm) ITO electrodes were coated with a thin (40 nm) TiN layer to decrease the impedance of Ø30 µm electrodes to one third (1200 kΩ 320 kΩ) while maintaining (partial) transparency. The third version was also composed of transparent ITO tracks, but the measurement properties were optimized by using thick (200 nm) opaque TiN electrodes. In addition to the impedance, the optical transmission and electric noise levels of all three versions were characterized and the functionality of the MEAs was successfully demonstrated using human pluripotent stem cell-derived neuronal cells. To understand more thoroughly the factors contributing to the impedance, MEAs with higher IBAD ITO thickness as well as commercial sputter-deposited and highly conductive ITO were fabricated for comparison. Even if the sheet-resistance of our IBAD ITO thin films is very high compared to the sputtered one, the impedances of the MEAs of each ITO grade were found to be practically equal (e.g., 300-370 kΩ for Ø30 µm electrodes with 40 nm TiN coating). This implies that the increased resistance of the tracks, either caused by lower thickness or lower conductivity, has hardly any contribution to the impedance of the MEA electrodes. The impedance is almost completely defined by the double-layer interface between the electrode top layer and the medium including cells.

18.
Sci Rep ; 9(1): 17125, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748598

ABSTRACT

Human pluripotent stem cell (hPSC)-derived neurons provide exciting opportunities for in vitro modeling of neurological diseases and for advancing drug development and neurotoxicological studies. However, generating electrophysiologically mature neuronal networks from hPSCs has been challenging. Here, we report the differentiation of functionally active hPSC-derived cortical networks on defined laminin-521 substrate. We apply microelectrode array (MEA) measurements to assess network events and compare the activity development of hPSC-derived networks to that of widely used rat embryonic cortical cultures. In both of these networks, activity developed through a similar sequence of stages and time frames; however, the hPSC-derived networks showed unique patterns of bursting activity. The hPSC-derived networks developed synchronous activity, which involved glutamatergic and GABAergic inputs, recapitulating the classical cortical activity also observed in rodent counterparts. Principal component analysis (PCA) based on spike rates, network synchronization and burst features revealed the segregation of hPSC-derived and rat network recordings into different clusters, reflecting the species-specific and maturation state differences between the two networks. Overall, hPSC-derived neural cultures produced with a defined protocol generate cortical type network activity, which validates their applicability as a human-specific model for pharmacological studies and modeling network dysfunctions.


Subject(s)
Cell Differentiation/physiology , Cerebellar Cortex/physiology , Laminin/metabolism , Nerve Net/physiology , Neurons/physiology , Pluripotent Stem Cells/physiology , Animals , Cell Culture Techniques/methods , Cell Line , Cerebellar Cortex/metabolism , Glutamic Acid/metabolism , Humans , Microelectrodes , Nerve Net/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Neurons/metabolism , Pluripotent Stem Cells/metabolism , Rats , Rats, Wistar , gamma-Aminobutyric Acid/metabolism
19.
Sci Rep ; 9(1): 16944, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729450

ABSTRACT

Astrocyte reactivation has been discovered to be an important contributor to several neurological diseases. In vitro models involving human astrocytes have the potential to reveal disease-specific mechanisms of these cells and to advance research on neuropathological conditions. Here, we induced a reactive phenotype in human induced pluripotent stem cell (hiPSC)-derived astrocytes and studied the inflammatory natures and effects of these cells on human neurons. Astrocytes responded to interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) treatment with a typical transition to polygonal morphology and a shift to an inflammatory phenotype characterized by altered gene and protein expression profiles. Astrocyte-secreted factors did not exert neurotoxic effects, whereas they transiently promoted the functional activity of neurons. Importantly, we engineered a novel microfluidic platform designed for investigating interactions between neuronal axons and reactive astrocytes that also enables the implementation of a controlled inflammatory environment. In this platform, selective stimulation of astrocytes resulted in an inflammatory niche that sustained axonal growth, further suggesting that treatment induces a reactive astrocyte phenotype with neurosupportive characteristics. Our findings show that hiPSC-derived astrocytes are suitable for modeling astrogliosis, and the developed in vitro platform provides promising novel tools for studying neuron-astrocyte crosstalk and human brain disease in a dish.


Subject(s)
Astrocytes/metabolism , Cell Communication , Interleukin-1beta/metabolism , Pluripotent Stem Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Cellular Microenvironment , Coculture Techniques , Cytokines/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Microfluidic Analytical Techniques , Neurons/metabolism , Phenotype , Pluripotent Stem Cells/cytology
20.
Macromol Biosci ; 19(7): e1900096, 2019 07.
Article in English | MEDLINE | ID: mdl-31173471

ABSTRACT

There is a clear need for novel in vitro models, especially for neuronal applications. Development of in vitro models is a multiparameter task consisting of cell-, biomaterial-, and environment-related parameters. Here, three different human origin neuronal cell sources are studied and cultured in various hydrogel 3D scaffolds. For the efficient evaluation of complex results, an indexing method for data is developed and used in principal component analysis (PCA). It is found that no single hydrogel is superior to other hydrogels, and collagen I (Col1) and hyaluronan-poly(vinyl alcohol) (HA1-PVA) gels are combined into an interpenetrating network (IPN) hydrogel. The IPN gel combines cell supportiveness of the collagen gel and stability of the HA1-PVA gel. Moreover, cell adhesion is studied in particular and it is found that adhesion of neurons differs from that observed for fibroblasts. In conclusion, the HA1-PVA-col1 hydrogel is a suitable scaffold for neuronal cells and supports adhesion formation in 3D.


Subject(s)
Collagen/pharmacology , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Neurons/cytology , Pluripotent Stem Cells/cytology , Polyvinyl Alcohol/pharmacology , Tissue Scaffolds/chemistry , Biomarkers/metabolism , Cell Adhesion/drug effects , Cell Line , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Humans , Integrin alpha6beta4/metabolism , Neuronal Outgrowth/drug effects , Neurons/drug effects , Pluripotent Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL