Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(3): 105766, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367669

ABSTRACT

Arp2/3 complex nucleates branched actin filaments that drive membrane invagination during endocytosis and leading-edge protrusion in lamellipodia. Arp2/3 complex is maximally activated in vitro by binding of a WASP family protein to two sites-one on the Arp3 subunit and one spanning Arp2 and ARPC1-but the importance of each site in the regulation of force-producing actin networks is unclear. Here, we identify mutations in budding yeast Arp2/3 complex that decrease or block engagement of Las17, the budding yeast WASP, at each site. As in the mammalian system, both sites are required for maximal activation in vitro. Dimerization of Las17 partially restores activity of mutations at both CA-binding sites. Arp2/3 complexes defective at either site assemble force-producing actin networks in a bead motility assay, but their reduced activity hinders motility by decreasing actin assembly near the bead surface and by failing to suppress actin filament bundling within the networks. While even the most defective Las17-binding site mutants assembled actin filaments at endocytic sites, they showed significant internalization defects, potentially because they lack the proper architecture to drive plasma membrane remodeling. Together, our data indicate that both Las17-binding sites are important to assemble functional endocytic actin networks in budding yeast, but Arp2/3 complex retains some activity in vitro and in vivo even with a severe defect at either Las17-binding site.


Subject(s)
Actin-Related Protein 2-3 Complex , Actins , Saccharomyces cerevisiae Proteins , Wiskott-Aldrich Syndrome Protein , Animals , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Binding Sites , Mammals/metabolism , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism
2.
Elife ; 122023 08 09.
Article in English | MEDLINE | ID: mdl-37555826

ABSTRACT

Dendrite morphogenesis is essential for neural circuit formation, yet the molecular mechanisms underlying complex dendrite branching remain elusive. Previous studies on the highly branched Caenorhabditis elegans PVD sensory neuron identified a membrane co-receptor complex that links extracellular signals to intracellular actin remodeling machinery, promoting high-order dendrite branching. In this complex, the claudin-like transmembrane protein HPO-30 recruits the WAVE regulatory complex (WRC) to dendrite branching sites, stimulating the Arp2/3 complex to polymerize actin. We report here our biochemical and structural analysis of this interaction, revealing that the intracellular domain (ICD) of HPO-30 is intrinsically disordered and employs two distinct mechanisms to regulate the actin cytoskeleton. First, HPO-30 ICD binding to the WRC requires dimerization and involves the entire ICD sequence, rather than a short linear peptide motif. This interaction enhances WRC activation by the GTPase Rac1. Second, HPO-30 ICD directly binds to the sides and barbed end of actin filaments. Binding to the barbed end requires ICD dimerization and inhibits both actin polymerization and depolymerization, resembling the actin capping protein CapZ. These dual functions provide an intriguing model of how membrane proteins can integrate distinct mechanisms to fine-tune local actin dynamics.


Subject(s)
Actin Cytoskeleton , Actins , Animals , Actins/metabolism , Actin Cytoskeleton/metabolism , Carrier Proteins/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Membrane Proteins/metabolism , Caenorhabditis elegans/metabolism , Dendrites/metabolism
3.
Front Plant Sci ; 14: 1079778, 2023.
Article in English | MEDLINE | ID: mdl-36818891

ABSTRACT

Introduction: Rice is a primary global food source, and its production is affected by abiotic stress, caused by climate change and other factors. Recently, the pyrimidine reductive catabolic pathway, catalyzed by dihydropyrimidine dehydrogenase (DHPD), dihydropyrimidinase (DHP) and ß-ureidopropionase (ß-UP), has emerged as a potential participant in the abiotic stress response of rice. Methods: The rice enzymes were produced as recombinant proteins, and two were kinetically characterized. Rice dihydroorotate dehydrogenase (DHODH), an enzyme of pyrimidine biosynthesis often confused with DHPD, was also characterized. Salt-sensitive and salt-resistant rice seedlings were subjected to salt stress (24 h) and metabolites in leaves were determined by mass spectrometry. Results: The OsDHPD sequence was homologous to the C-terminal half of mammalian DHPD, conserving FMN and uracil binding sites, but lacked sites for Fe/S clusters, FAD, and NADPH. OsDHPD, truncated to eliminate the chloroplast targeting peptide, was soluble, but inactive. Database searches for polypeptides homologous to the N-terminal half of mammalian DHPD, that could act as co-reductants, were unsuccessful. OsDHODH exhibited kinetic parameters similar to those of other plant DHODHs. OsDHP, truncated to remove a signal sequence, exhibited a kcat/Km = 3.6 x 103 s-1M-1. Osb-UP exhibited a kcat/Km = 1.8 x 104 s-1M-1. Short-term salt exposure caused insignificant differences in the levels of the ureide intermediates dihydrouracil and ureidopropionate in leaves of salt-sensitive and salt-resistant plants. Allantoin, a ureide metabolite of purine catabolism, was found to be significantly higher in the resistant cultivar compared to one of the sensitive cultivars. Discussion: OsDHP, the first plant enzyme to be characterized, showed low kinetic efficiency, but its activity may have been affected by truncation. Osb-UP exhibited kinetic parameters in the range of enzymes of secondary metabolism. Levels of two pathway metabolites were similar in sensitive and resistant cultivars and appeared to be unaffected by short-term salt exposure."

4.
J Biol Chem ; 298(6): 102019, 2022 06.
Article in English | MEDLINE | ID: mdl-35533728

ABSTRACT

Arp2/3 complex nucleates branched actin filaments that drive processes like endocytosis and lamellipodial protrusion. WISH/DIP/SPIN90 (WDS) proteins form a class of Arp2/3 complex activators or nucleation promoting factors (NPFs) that, unlike WASP family NPFs, activate Arp2/3 complex without requiring preformed actin filaments. Therefore, activation of Arp2/3 complex by WDS proteins is thought to produce the initial actin filaments that seed branching nucleation by WASP-bound Arp2/3 complexes. However, whether activation of Arp2/3 complex by WDS proteins is important for the initiation of branched actin assembly in cells has not been directly tested. Here, we used structure-based point mutations of the Schizosaccharomyces pombe WDS protein Dip1 to test the importance of its Arp2/3-activating activity in cells. Six of thirteen Dip1 mutants caused severe defects in Arp2/3 complex activation in vitro, and we found a strong correlation between the ability of mutants to activate Arp2/3 complex and to rescue endocytic actin assembly defects caused by deleting Dip1. These data support a model in which Dip1 activates Arp2/3 complex to produce actin filaments that initiate branched actin assembly at endocytic sites. Dip1 mutants that synergized with WASP in activating Arp2/3 complex in vitro showed milder defects in cells compared to those that did not, suggesting that in cells the two NPFs may coactivate Arp2/3 complex to initiate actin assembly. Finally, the mutational data reveal important complementary electrostatic contacts at the Dip1-Arp2/3 complex interface and corroborate the previously proposed wedge model, which describes how Dip1 binding triggers structural changes that activate Arp2/3 complex.


Subject(s)
Actin Cytoskeleton , Actin-Related Protein 2-3 Complex , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Pseudopodia/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
5.
Proc Natl Acad Sci U S A ; 119(22): e2202723119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35622886

ABSTRACT

Arp2/3 complex nucleates branched actin filaments that provide pushing forces to drive cellular processes such as lamellipodial protrusion and endocytosis. Arp2/3 complex is intrinsically inactive, and multiple classes of nucleation promoting factors (NPFs) stimulate its nucleation activity. When activated by WASP family NPFs, the complex must bind to the side of a preexisting (mother) filament of actin to complete the nucleation process, ensuring that WASP-mediated activation creates branched rather than linear actin filaments. How actin filaments contribute to activation is currently not understood, largely due to the lack of high-resolution structures of activated Arp2/3 complex bound to the side of a filament. Here, we present the 3.9-Å cryo-electron microscopy structure of the Arp2/3 complex at a branch junction. The structure reveals contacts between Arp2/3 complex and the side of the mother actin filament that likely stimulate subunit flattening, a conformational change that allows the actin-related protein subunits in the complex (Arp2 and Arp3) to mimic filamentous actin subunits. In contrast, limited contact between the bottom half of the complex and the mother filament suggests that clamp twisting, a second major conformational change observed in the active state, is not stimulated by actin filaments, potentially explaining why actin filaments are required but insufficient to trigger nucleation during WASP-mediated activation. Along with biochemical and live-cell imaging data and molecular dynamics simulations, the structure reveals features critical for the interaction of Arp2/3 complex with actin filaments and regulated assembly of branched actin filament networks in cells.


Subject(s)
Actin Cytoskeleton , Actin-Related Protein 2-3 Complex , Actin Cytoskeleton/chemistry , Actin-Related Protein 2-3 Complex/chemistry , Actin-Related Protein 2-3 Complex/metabolism , Cryoelectron Microscopy , Cytoskeleton/metabolism , Molecular Dynamics Simulation , Protein Conformation , Wiskott-Aldrich Syndrome Protein/metabolism
6.
Curr Biol ; 32(5): 975-987.e6, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35090589

ABSTRACT

Arp2/3 complex nucleates branched actin filaments important for processes such as DNA repair, endocytosis, and cellular motility. Multiple factors are required to activate branching nucleation by Arp2/3 complex, including a WASP family protein and a pre-existing actin filament. Activation is achieved through two major conformational changes-subunit flattening and movement into the short pitch conformation-that allow the actin-related proteins (Arps) within the complex (Arp2 and Arp3) to mimic filamentous actin subunits, thereby templating new filament assembly. Some models suggest that these changes are concerted and stimulated cooperatively by WASP and actin filaments, but how Arp2/3 complex integrates signals from multiple factors to drive switch-like activation of branching nucleation has been unknown. Here, we use biochemical assays to show that instead of a concerted mechanism, signal integration by Arp2/3 complex occurs via distinct and unconcerted conformational changes; WASP stimulates the short pitch arrangement of Arp2 and Arp3, while actin filaments trigger a different activation step. An engineered Arp2/3 complex that bypasses the need for WASP but not actin filaments in activation potently assembles isotropic actin networks but fails to assemble sustained force-producing actin networks in bead motility assays. The engineered complex, which is crosslinked into the short pitch conformation, fails to target nucleation to the surface of the bead, creating unproductive branching events that deplete unpolymerized actin and halt assembly. Together, our data demonstrate the requirement for multifactor signal integration by Arp2/3 complex and highlight the importance of both the WASP- and actin filament-mediated activation steps in the assembly of functional actin networks.


Subject(s)
Actin-Related Protein 2-3 Complex , Actins , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism
7.
Elife ; 92020 11 12.
Article in English | MEDLINE | ID: mdl-33179595

ABSTRACT

The actin filament nucleator Arp2/3 complex is activated at cortical sites in Schizosaccharomyces pombe to assemble branched actin networks that drive endocytosis. Arp2/3 complex activators Wsp1 and Dip1 are required for proper actin assembly at endocytic sites, but how they coordinately control Arp2/3-mediated actin assembly is unknown. Alone, Dip1 activates Arp2/3 complex without preexisting actin filaments to nucleate 'seed' filaments that activate Wsp1-bound Arp2/3 complex, thereby initiating branched actin network assembly. In contrast, because Wsp1 requires preexisting filaments to activate, it has been assumed to function exclusively in propagating actin networks by stimulating branching from preexisting filaments. Here we show that Wsp1 is important not only for propagation but also for initiation of endocytic actin networks. Using single molecule total internal reflection fluorescence microscopy we show that Wsp1 synergizes with Dip1 to co-activate Arp2/3 complex. Synergistic co-activation does not require preexisting actin filaments, explaining how Wsp1 contributes to actin network initiation in cells.


Subject(s)
Actins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Gene Expression Regulation, Fungal/physiology , Schizosaccharomyces pombe Proteins/genetics
8.
Front Microbiol ; 10: 1479, 2019.
Article in English | MEDLINE | ID: mdl-31316493

ABSTRACT

The oomycete Phytophthora infestans is the causal agent of tomato and potato late blight, a disease that causes tremendous economic losses in the production of solanaceous crops. The similarities between oomycetes and the apicomplexa led us to hypothesize that dihydroorotate dehydrogenase (DHODH), the enzyme catalyzing the fourth step in pyrimidine biosynthetic pathway, and a validated drug target in treatment of malaria, could be a potential target for controlling P. infestans growth. In eukaryotes, class 2 DHODHs are mitochondrially associated ubiquinone-linked enzymes that catalyze the fourth, and only redox step of de novo pyrimidine biosynthesis. We characterized the enzymes from both the pathogen and a host, Solanum tuberosum. Plant DHODHs are known to be class 2 enzymes. Sequence analysis suggested that the pathogen enzyme (PiDHODHs) also belongs to this class. We confirmed the mitochondrial localization of GFP-PiDHODH showing colocalization with mCherry-labeled ATPase in a transgenic pathogen. N-terminally truncated versions of the two DHODHs were overproduced in E. coli, purified, and kinetically characterized. StDHODH exhibited a apparent specific activity of 41 ± 1 µmol min-1 mg-1, a kcat app of 30 ± 1 s-1, and a Km app of 20 ± 1 µM for L-dihydroorotate, and a Km app= 30 ± 3 µM for decylubiquinone (Qd). PiDHODH exhibited an apparent specific activity of 104 ± 1 µmol min-1 mg-1, a kcat app of 75 ± 1 s-1, and a Km app of 57 ± 3 µM for L-dihydroorotate, and a Km app of 15 ± 1 µM for Qd. The two enzymes exhibited different activities with different quinones and napthoquinone derivatives, and different sensitivities to compounds known to cause inhibition of DHODHs from other organisms. The IC50 for A77 1726, a nanomolar inhibitor of human DHODH, was 2.9 ± 0.6 mM for StDHODH, and 79 ± 1 µM for PiDHODH. In vivo, 0.5 mM A77 1726 decreased mycelial growth by approximately 50%, after 92 h. Collectively, our findings suggest that the PiDHODH could be a target for selective inhibitors and we provide a biochemical background for the development of compounds that could be helpful for the control of the pathogen, opening the way to protein crystallization.

9.
Article in English | MEDLINE | ID: mdl-29623259

ABSTRACT

Cytidine triphosphate synthase catalyzes the synthesis of cytidine 5'-triphosphate (CTP) from uridine 5'-triphosphate (UTP), the final step in the production of cytidine nucleotides. CTP synthases also form filamentous structures of different morphologies known as cytoophidia, whose functions in most organisms are unknown. Here, we identified and characterized a novel CTP synthase (TgCTPS) from Toxoplasma gondii. We show that TgCTPS is capable of substituting for its counterparts in the otherwise lethal double mutant (ura7Δ ura8Δ) of Saccharomyces cerevisiae. Equally, recombinant TgCTPS purified from Escherichia coli encodes for a functional protein in enzyme assays. The epitope-tagged TgCTPS under the control of its endogenous promoter displays a punctate cytosolic distribution, which undergoes spatial reorganization to form foci or filament-like structures when the parasite switches from a nutrient-replete (intracellular) to a nutrient-scarce (extracellular) condition. An analogous phenotype is observed upon nutrient stress or after treatment with a glutamine analog, 6-diazo-5-oxo-L-norleucine (DON). The exposure of parasites to DON disrupts the lytic cycle, and the TgCTPS is refractory to a genetic deletion, suggesting an essential requirement of this enzyme for T. gondii. Not least, this study, together with previous studies, supports that CTP synthase can serve as a potent drug target, because the parasite, unlike human host cells, cannot compensate for the lack of CTP synthase activity.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Protozoan Proteins/metabolism , Toxoplasma/enzymology , Amino Acid Sequence , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Cytoplasm/enzymology , Glutamine/metabolism , Humans , Kinetics , Molecular Sequence Data , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasma/growth & development , Toxoplasma/metabolism , Toxoplasmosis/parasitology
10.
J Genet Genomics ; 42(5): 195-205, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26059768

ABSTRACT

The importance of pyrimidines lies in the fact that they are structural components of a broad spectrum of key molecules that participate in diverse cellular functions, such as synthesis of DNA, RNA, lipids, and carbohydrates. Pyrimidine metabolism encompasses all enzymes involved in the synthesis, degradation, salvage, interconversion and transport of these molecules. In this review, we summarize recent publications that document how pyrimidine metabolism changes under a variety of conditions, including, when possible, those studies based on techniques of genomics, transcriptomics, proteomics, and metabolomics. First, we briefly look at the dynamics of pyrimidine metabolism during nonpathogenic cellular events. We then focus on changes that pathogen infections cause in the pyrimidine metabolism of their host. Next, we discuss the effects of antimetabolites and inhibitors, and finally we consider the consequences of genetic manipulations, such as knock-downs, knock-outs, and knock-ins, of pyrimidine enzymes on pyrimidine metabolism in the cell.


Subject(s)
Cells/metabolism , Pyrimidines/metabolism , Animals , Cells/cytology , Cells/pathology , Computational Biology , Humans , Infections/metabolism , Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...