Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Photochem Photobiol ; 100(2): 443-452, 2024.
Article in English | MEDLINE | ID: mdl-38356286

ABSTRACT

Time-dependent density functional theory (TD-DFT) and multiconfigurational second-order perturbation theory (CASPT2) are two of the most widely used methods to investigate photoinduced dynamics in DNA-based systems. These methods sometimes give diverse dynamics in physiological environments usually modeled by quantum mechanics/molecular mechanics (QM/MM) protocol. In this work, we demonstrate for the uridine test case that the underlying topology of the potential energy surfaces of electronic states involved in photoinduced relaxation is similar in both electronic structure methods. This is verified by analyzing surface-hopping dynamics performed at the QM/MM level on aqueous solvated uridine at TD-DFT and CASPT2 levels. By constraining the dynamics to remain on π π * state we observe similar fluctuations in energy and relaxation lifetimes in surface-hopping dynamics in both TD-DFT and experimentally validated CASPT2 methods. This finding calls for a systematic comparison of the ES potential energy surfaces of DNA and RNA nucleosides at the single- and multi-reference levels of theory. The anomalous long excited state lifetime at the TD-DFT level is explained by n π * trapping due to the tendency of TD-DFT in QM/MM schemes with electrostatic embedding to underestimate the energy of the π π * state leading to a wrong π π * / n π * energetic order. A study of the FC energetics suggests that improving the description of the surrounding environment through polarizable embedding or by the expansion of QM layer with hydrogen-bonded waters helps restore the correct state order at TD-DFT level. Thus by combining TDDFT with an accurate modeling of the environment, TD-DFT is positioned as the standout protocol to model photoinduced dynamics in DNA-based aggregates and multimers.


Subject(s)
Electronics , Quantum Theory , Density Functional Theory , DNA , Uridine
2.
Animals (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396518

ABSTRACT

The aim was to evaluate the chemical composition, carbohydrates, protein fractionation and in vitro gas production of silages composed of spineless cactus and tropical forages and their effect on sheep performance. Treatments consisted of silages: corn silage (CS), spineless cactus silage (SCS), spineless cactus + gliricidia (SCG), spineless cactus + buffel grass silage (SCBG) and spineless cactus + pornunça (SCP). Silos were opened 60 days after ensiling, and analyses were carried out. The digestibility test lasted for 36 days, with eight animals per treatment. A completely randomized design was adopted. Considering carbohydrate fractionation, CS, SCS and SCBG silages had higher total carbohydrate content (p = 0.001). The SCS silage presented a higher A + B1 fraction (p = 0.001). The SCBG and SCG silages showed a higher B2 fraction (p < 0.0001) compared to the CS and SCS silages. The SCBG and SCP silages presented a higher C fraction (p = 0.001). For protein fractionation, the SCP and SCG silages showed higher crude protein contents (p = 0.001). The CS and SCS silages showed a higher A fraction (p = 0.001). The SCBG silage presented a higher B1 + B2 fraction (p = 0.001). The SCG silage showed a higher B3 fraction (p = 0.006) compared to SCBG silage. The SCS and SCP silages showed a higher C fraction (p = 0.001). Exclusive SCS silage showed higher in vitro dry matter digestibility (p = 0.001), dry matter degradability (p = 0.001) and total gas production (p = 0.001). The use of the SCBG, SCP and SCG silages to feed sheep increased the dry matter intake (p < 0.001). Sheep fed the SCG silage showed greater dry matter and crude protein digestibility compared to the sheep fed the CS, SCS and SCP silages (p = 0.002). There was a higher water intake (p < 0.001) with the use of the SCS and SCG silages to feed the sheep. The SCP and SCG silages provided a greater intake (p < 0.001) and excretion (p < 0.001) of nitrogen by the animals. Although there were no differences between the treatments for daily gains, lambs that received the spineless cactus-based silage associated with tropical forages showed higher gains (160-190 g/day) than lambs that received CS silage (130 g/day). Thus, the use of spineless cactus associated with buffelgrass, pornunça and gliricidia to prepare mixed silages (60:40) to feed sheep has potential use to feed sheep, with positive effects on nutrient degradation and increases in dry matter intake. Under experimental conditions, we recommend the exclusive use of spineless cactus silage associated with buffel grass, pornunça and gliricidia in feeding sheep in semi-arid regions, as it provides nutrients, water and greater daily gains compared to corn silage.

3.
Article in English | MEDLINE | ID: mdl-38258769

ABSTRACT

Important physiological changes are observed in patients with obesity, such as intestinal permeability, gastric emptying, cardiac output, and hepatic and renal function. These differences can determine variations in the pharmacokinetics of different drugs and can generate different concentrations at the site of action, which can lead to sub therapeutic or toxic concentrations. Understanding the physiological and immunological processes that lead to the clinical manifestations of COVID-19 is essential to correlate obesity as a risk factor for increasing the prevalence, severity, and lethality of the disease. Several drugs have been suggested to control COVID- 19 like Lopinavir, Ritonavir, Ribavirin, Sofosbuvir, Remdesivir, Oseltamivir, Oseltamivir phosphate, Oseltamivir carboxylate, Hydroxychloroquine, Chloroquine, Azithromycin, Teicoplanin, Tocilizumab, Anakinra, Methylprednisolone, Prednisolone, Ciclesonide and Ivermectin. Similarly, these differences between healthy people and obese people can be correlated to mechanical factors, such as insufficient doses of the vaccine for high body mass, impairing the absorption and distribution of the vaccine that will be lower than desired or can be linked to the inflammatory state in obese patients, which can influence the humoral immune response. Additionally, different aspects make the obese population more prone to persistent symptoms of the disease (long COVID), which makes understanding these mechanisms fundamental to addressing the implications of the disease. Thus, this review provides an overview of the relationship between COVID-19 and obesity, considering aspects related to pharmacokinetics, immunosuppression, immunization, and possible implications of long COVID in these individuals.

4.
Chem Sci ; 14(47): 13776-13782, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38075656

ABSTRACT

The triplet excited states of ketones are found to effect selective H-atom abstraction from strong amide N-H bonds in the presence of weaker C-H bonds through a proton-coupled electron transfer (PCET) pathway. This chemoselectivity, which results from differences in ionization energies (IEs) between functional groups rather than bond dissociation energies (BDEs) arises from the asynchronicity between electron and proton transfer in the PCET process. We show how this strategy may be leveraged to achieve the intramolecular anti-Markovnikov hydroamidation of alkenes to form lactams using camphorquinone as an inexpensive and sustainable photocatalyst.

5.
Plant Dis ; 2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38105452

ABSTRACT

Amazon chicory (Eryngium foetidum L. [Apiaceae]), also known as culantro, is native to Tropical America and the West Indies. It belongs to the unconventional food plants (UFPs) group, and in addition to be consumed as a spice herb, it possesses a wide range of ethnomedicinal uses (Paul et al. 2011). In 2019, in the eastern Amazon region of Brazil, state of Pará, producers of E. foetidum in the municipality of Castanhal (01°15'363" S 047°10'232" W) reported the occurrence of underdeveloped plants with leaf yellowing and a large number of galls in the root system, which are typical symptoms of root-knotting nematode. Soil and root samples were collected and sent to the Nematology Laboratory (LabNema) located at the Faculty of Agrarian and Veterinary Sciences, UNESP, Jaboticabal, São Paulo, Brazil. A total of 46 second-stage juveniles (J2s) were extracted per 100 cm3 of soil, and a total of 460 eggs and J2s Meloidogyne spp. were found per gram of root. Morphological and molecular techniques were used to identify the species. The analysis of the perineal patter of ten females revealed thin striations in an oval shape with a high and semi-trapezoidal dorsal arch. No striations were observed in the perivulvar region. The labial region of the ten males analyzed exhibited a non-prominent labial disc, fused and slightly recessed submedian lips, with no apparent annulations. The morphological characteristics observed in the adults were consistent with those originally described for Meloidogyne enterolobii (Yang; Eisenback, 1983), confirming the species purity of the recovered population. Three individual nematodes had their 18S rDNA region sequenced (Holterman et al. 2006) which showed an average identity of 99.7% with other sequences of M. enterolobii available in the GenBank database. A Bayesian phylogenetic tree was constructed, providing insights into the specific relationship of M. enterolobii recovered from E. foetidum with other related nematodes. Each of the three sequenced nematodes represented a unique haplotype, resulting in their separation into distinct clades. Moreover, the obtained sequences presented polymorphisms that differed from the M. enterolobii sequences already available in the database, highlighting the genetic diversity of this species in relation to its original host (Silva et al. 2021). The species M. enterolobii was also confirmed using species-specific primers for M. incognita, M. javanica, and M. enterolobii (Zijlstra et al. 2000; Tigano et al. 2010). To confirm the pathogenicity of M. enterolobii on E. foetidum, a modified Koch Postulate was conducted. Six seedlings of E. foetidum were transplanted individually to 10-liter pots containing autoclaved soil. Each pot was then inoculated with 5 mL of a suspension containing 3,000 eggs and J2s from the original population of M. enterolobii obtained from E. foetidum. After 90 days, the inoculated plants exhibited root galls with a plentiful egg mass, in contrast to the healthy non-inoculated plants. The average number of M. enterolobii nematodes recovered from the roots of the inoculated plants was 42,040 eggs and J2s, resulting in a reproduction factor (RF) of 14.0. The importance of reporting the occurrence of M. enterolobii in E. foetidum is due to the fact that this plant species is cultivated in a crop rotation system with other vegetables such as lettuce and coriander, which are also hosts of M. enterolobii. Consequently, different crop rotation strategies and control alternatives need to be considered in areas where E. foetidum is grown. This is the first report of E. foetidum serving as a host for the root-knot nematode M. enterolobii worldwide.

6.
Plant Dis ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966472

ABSTRACT

Stachys byzantina belongs to the Labiatae and is known by the names "peixinho-da-horta" (Brazil) and "lamb's ear" (USA). Its importance is associated with its medicinal properties (Bahadori et al. 2020) and nutritional aspects (Milião et al. 2022). Root-knot nematodes cause severe damage to plants and suppress production. In January 2021, plants of S. byzantina in the municipality of Jaboticabal (21°14'38.7"S, 48°17'10.6"W) showed symptoms of reduced growth, yellowed leaves and the presence of galls in the roots. Initially, samples of roots from a S. byzantina were analyzed at the Nematology Laboratory (LabNema/UNESP), Jaboticabal, Brazil, estimating 20,000 eggs and juveniles of Meloidogyne sp. in 10 g of roots. To confirm the host ability of the species, a pathogenicity test was performed using Koch's postulate. For this purpose, the test was conducted in a greenhouse where 3,000 eggs and second-stage juveniles (J2) were inoculated onto three plants (n=3) of S. byzantina. After 90 days, the inoculated plants showed the same symptoms as those observed in the field. No symptom or nematode was detected in the uninoculated plant (control). Nematodes were extracted from the roots of inoculated plants and quantified. The perineal pattern of females (n=10) (Netscher and Taylor, 1974) and the labial region of males (n=10) (Eisenback and Hirschmann, 1981) were analyzed and compared with the morphological characteristics of the original description of the species (Chitwood, 1949). For analysis based on esterase isozyme phenotype, the α-method of Esbenshade and Triantaphyllou (1990) was used, and females (n=7) were examined. To confirm identification, whole genomic DNA from an adult female (n=1) was extracted using the Qiagen DNeasy® Blood & Tissue Kit and this sample was used for both genetic sequencing and the sequence-characterized amplified region techniques (SCAR). PCR amplifications were performed for the 18s rRNA gene using primers 988F and 1912R from Holterman et al (2006). Our sequence was deposited in GenBank (NCBI) under the identifier OP422209. Finally, species-specific SCAR primers (Fjav/Rjav, Me-F/Me-R, and Finc-F/Finc-R) designed by Zijlstra (2000) were used to identify Meloidogyne spp. Koch's postulate analysis yielded the following results: (n=1) 9,280 eggs and J2 (Reproduction factor, RF = 33.09); (n=2) 111,720 eggs and J2 (RF = 37.24); (n=3) 59,700 eggs and J2 (RF = 19.9) (RF mean = 30.08). The following characteristics were observed in the perineal region of females: Low and rounded trapezoidal dorsal arch with two distinct lateral lines clearly separating the dorsal and ventral arch regions, similar to the morphological features of the species description by Chitwood (1949). Males had a convex labial plate with a non-raised labial disk joining the submedial labia, a non-rugged labial region, the basal tubercles were usually wider than high, and a rounded tail tip (Eisenback and Hirschmann 1981). The α-esterase enzyme profile showed the J3 phenotype typical of M. javanica (Rm [×100] = 46.0, 54.5, and 58.9). The 18s rRNA sequences grouped Meloidogyne sp. with species such as M. enterolobii, M. incognita, and M. javanica. A DNA fragment of about 700 bp was amplified with Mj (Fjav/Rjav) primers, but not with Me (Me-F/Me-R) and Mi (Finc-F/Finc-R) primers, which confirmed the identification of M. javanica. Accurate identification and characterization of the occurrence of new hosts of M. javanica will allow us to determine the range and geographic distribution of the species. This is the first report on the occurrence of M. javanica on S. byzantina in Brazil. This report is important so that management strategies can be applied to prevent the spread of the pest to other areas.

7.
Sci Rep ; 13(1): 8978, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268714

ABSTRACT

Dating back to the late Early Cretaceous, the macrofossil record of the iconic lotus family (Nelumbonaceae) is one of the oldest of flowering plants and suggests that their unmistakable leaves and nutlets embedded in large pitted receptacular fruits evolved relatively little in the 100 million years since their first known appearance. Here we describe a new fossil from the late Barremian/Aptian Crato Formation flora (NE Brazil) with both vegetative and reproductive structures, Notocyamus hydrophobus gen. nov. et sp. nov., which is now the oldest and most complete fossil record of Nelumbonaceae. In addition, it displays a unique mosaic of ancestral and derived macro- and micromorphological traits that has never been documented before in this family. This new Brazilian fossil-species also provides a rare illustration of the potential morphological and anatomical transitions experienced by Nelumbonaceae prior to a long period of relative stasis. Its potential plesiomorphic and apomorphic features shared with Proteaceae and Platanaceae not only fill a major morphological gap within Proteales but also provide new support for their unexpected relationships first suggested by molecular phylogenies.


Subject(s)
Fossils , Magnoliopsida , Phylogeny , Reproduction , Magnoliopsida/anatomy & histology , Plants
8.
Int J Mol Sci ; 24(7)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37047621

ABSTRACT

The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) protein has been indicated as an overexpressed oncoprotein in prostate cancer (PCa), associated with tumor progression and aggressiveness. Taxane-based antineoplastic drugs such as paclitaxel, docetaxel, or cabazitaxel, have been investigated in PCa treatment, namely for the development of combined therapies with the improvement of therapeutic effectiveness. This study aimed to evaluate the expression of STEAP1 in response to taxane-based drugs and assess whether the sensitivity of PCa cells to treatment with paclitaxel, docetaxel, or cabazitaxel may change when the STEAP1 gene is silenced. Thus, wild-type and STEAP1 knockdown LNCaP and C4-2B cells were exposed to paclitaxel, docetaxel or cabazitaxel, and STEAP1 expression, cell viability, and survival pathways were evaluated. The results obtained showed that STEAP1 knockdown or taxane-based drugs treatment significantly reduced the viability and survival of PCa cells. Relatively to the expression of proliferation markers and apoptosis regulators, LNCaP cells showed a reduced proliferation, whereas apoptosis was increased. However, the effect of paclitaxel, docetaxel, or cabazitaxel treatment was reversed when combined with STEAP1 knockdown. Besides, these chemotherapeutic drugs may stimulate the cell growth of PCa cells knocked down for STEAP1. In conclusion, this study demonstrated that STEAP1 expression levels might influence the response of PCa cells to chemotherapeutics drugs, indicating that the use of paclitaxel, docetaxel, or cabazitaxel may lead to harmful effects in PCa cells with decreased expression of STEAP1.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Docetaxel/pharmacology , Docetaxel/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Prostate/pathology , Cell Line, Tumor , Taxoids/pharmacology , Taxoids/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antigens, Neoplasm/therapeutic use , Oxidoreductases
9.
Mol Med Rep ; 27(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36660947

ABSTRACT

Anti­androgen drugs are the standard pharmacological therapies for treatment of non­metastatic prostate cancer (PCa). However, the response of PCa cells may depend on the anti­androgen used and often patients become resistant to treatment. Thus, studying how the anti­androgen drugs affect oncogenes expression and action and the identification of the best strategy for combined therapies are essential to improve the efficacy of treatments. The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) is an oncogene associated with PCa progression and aggressiveness, although its relationship with the androgen receptor signaling remains to be elucidated. The present study aimed to evaluate the effect of anti­androgens in regulating STEAP1 expression and investigate whether silencing STEAP1 can make PCa cells more sensitive to anti­androgen drugs. For this purpose, wild­type and STEAP1 knockdown LNCaP cells were exposed to bicalutamide, enzalutamide and apalutamide. Bicalutamide decreased the expression of STEAP1, but enzalutamide and apalutamide increased its expression. However, decreased cell proliferation and increased apoptosis was observed in response to all drugs. Overall, the cellular and molecular effects were similar between LNCaP wild­type and LNCaP­STEAP1 knockdown cells, except for c­myc expression levels, where a cumulative effect between anti­androgen treatment and STEAP1 knockdown was observed. The effect of STEAP1 knockdown alone or combined with anti­androgens in c­myc levels is required to be addressed in future studies.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Nitriles/pharmacology , Androgen Antagonists/pharmacology , Antigens, Neoplasm , Oxidoreductases
10.
Article in English | LILACS, VETINDEX | ID: biblio-1451777

ABSTRACT

Several agents can cause hemoparasitic diseases in dogs, and blood-sucking arthropods transmit these diseases. These agents can cause several clinical manifestations and, in some cases, can kill the host. Because these agents are essential in animal health, this study aims to detect the frequency of Ehrlichia canis, Rickettsia rickettsii, Anaplasma platys, and Rangelia vitalii by real-time PCR and Babesia vogeli in dogs in the southern region of the city of São Paulo, São Paulo. Of the 98 dog samples, 18 (18.4%) tested positive with real-time polymerase chain reaction for at least one studied agent. Of these 18 samples, 17 tested positive for a single agent (11.2% for B. canis vogeli, 1.02% for R. vitalii, and 5.1% for E. canis), and one showed co-infection with B. canis vogeli and R. vitalii. The results demonstrate the presence of hemoparasites in the studied animals, which can influence the quality and life expectancy of these animals. The Rangeliadetection warns small animal clinicians to include it as a differential diagnosis for hemoparasitosis.(AU)


As hemoparasitoses em cães podem ser causadas por diversos agentes, sendo essas doenças transmitidas por artrópodes hematófagos. Esses agentes podem causar diversas manifestações clínicas e, em alguns casos, podem matar o hospedeiro. Este estudo teve como objetivo detectar por PCR em tempo real a frequência de Ehrlichia canis, Rickettsia rickettsii, Anaplasma platys, Rangelia vitalii e Babesia canis vogeli em amostras de cães da zona sul da cidade de São Paulo, Brasil. Das 98 amostras de cães, 18 (18,4%) testaram positivo com reação em cadeia da polimerase em tempo real para pelo menos um agente estudado. Destas 18 amostras, 17 testaram positivo para um único agente (11,2% para B. canis vogeli, 1,02% para R. vitalii e 5,1% para E. canis), e uma apresentou coinfecção com B. canis vogeli e R. vitalii. Os resultados demonstram a presença de hemoparasitas nos animais estudados, o que pode influenciar a qualidade e a expectativa de vida desses animais. Além disso, é o primeiro relato da detecção de R. vitalli na zona sul de São Paulo e serve de alerta para os clínicos de pequenos animais incluírem esse agente como diagnóstico diferencial para as hemoparasitoses.(AU)


Subject(s)
Animals , Protozoan Infections/diagnosis , Babesiosis/diagnosis , Ehrlichiosis/diagnosis , Dogs/microbiology , Brazil , Polymerase Chain Reaction/veterinary , Piroplasmida , Molecular Diagnostic Techniques/veterinary , Ehrlichia canis
11.
Phys Chem Chem Phys ; 24(33): 19975, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35946599

ABSTRACT

Correction for 'Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods' by Daniel R. Nascimento et al., Phys. Chem. Chem. Phys., 2022, 24, 14680-14691, https://doi.org/10.1039/D2CP01132H.

12.
Chem Sci ; 13(18): 5107-5117, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35655574

ABSTRACT

Ruthenium-cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via ß-H elimination. The factors responsible for promoting or inhibiting ß-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru-CAAC and Ru-NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits ß-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB Cß-H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a 'late' TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting ß-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts.

13.
Phys Chem Chem Phys ; 24(24): 14680-14691, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35699090

ABSTRACT

The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.


Subject(s)
X-Rays , Density Functional Theory , Spectrum Analysis
14.
Plant Dis ; 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35771115

ABSTRACT

Buckwheat (Fagopyrum esculentum Moench) belongs to the Polygonaceae family and has been widely cultivated due to its high nutritional, nutraceutical, and medicinal properties. Brazil ranks seventh-largest producer, with 66,000 tons produced in 2018. Buckwheat is also valued for its adaptability as a cover crop, in grain fields of soybean (Glycine max (L.) Merr., maize (Zea mays L.), and sorghum (Sorghum bicolor (L.) Moench) (Görgen et al. 2016, Babu et al. 2018) especially in fields highly infested with plant-parasitic nematodes (PPN). PPN cause severe root damage, suppressing plant development and yield production. In October 2018, six samples of roots and soil were collected in symptomatic patches of buckwheat, in Guaíra SP (20° 19' 32"S 48° 13' 15.4"W). Samples were analyzed in the Nematology Laboratory (LabNema), UNESP, Jaboticabal, SP, BR. Plants presented symptoms of yellow leaves and galled and volume-reduced roots. Meloidogyne sp. was found, comprising 6,320 eggs and second-stage juveniles (J2s) from 10 g of root and 1,628 J2s in 100 cm³ of soil. Adult morphological characteristics, isoenzyme phenotype of esterase, and molecular analysis were performed to identify the Meloidogyne species. The perineal patterns presented high and trapezoidal dorsal arch (n=15), and the males showed a trapezoidal labial region, including a high head cap formed by a large round labial disc that is raised above the medial lips and centrally concave (n=15) (Eisenback and Hirscmann 1981). These characteristics are typical in Meloidogyne incognita (Kofoid and White, 1912) Chitwood, 1949 (Nascimento et al., 2020; Eisenback and Hirschmann 1981; Netscher and Taylor 1974). The enzymatic phenotype was performed with females (n=8), and the phenotype I1 was verified, described by Esbenshade and Triantaphyllou (1985) as typical for M. incognita. To confirm the species DNA samples were extracted from individual females (n=6) and PCR with specific primers for M. incognita (Mi-F 5'- GTGAGGATTCAGCTCCCCAG-3' and Mi-R 5'-ACGAGGAA CATACTTCTCCGTCC-3') and M. javanica (Treub) Chitwood 1949 (Fjav 5'-GGTGCGCGATTGAACTGAGC-3' and Rjav 5'-CAG GCCCTTCAGTGGAACTATAC-3') that amplify SCAR markers described by Meng et al. (2004) and Zijlstra et al. (2000), respectively, and specific primers for M. enterolobii Yang & Eisenback 1983 that amplify rDNA-IGS2 region (Me-F 5'-AACTTTTG TGAAAGTGCCGCTG-3' and Me-R 5'-TCAGTTCAGGCAGG ATCAACC-3') described by Long et al. (2006) were tested. A fragment of 955 pb DNA size was amplified in Mi-F/R primer, which confirmed the M. incognita identification (Meng et. al., 2004). The original population was used to execute pathogenicity test. In a greenhouse, single buckwheat seeds (cv. IPR 91 Baili) were sown in six 5L pots filled with autoclaved-soil and inoculated with 3,000 eggs and J2s per pot (n=6) and control (n=6). After 60 days, the nematodes were extracted from roots and the M. incognita was confirmed. An average of 15,738 eggs and J2s were recovered, (reproductive factor = 5.24), which confirmed buckwheat as a host to M. incognita. The inoculated plants showed symptoms as those observed in the field. No symptom or nematode was noted on the control. Meloidogyne incognita has been reported causing high damage to the F. esculentum in California (Gardner and Caswell-Chen 1994) plus several crops in Brazil (Nascimento et al., 2020). However, this is the first report of this nematode infecting buckwheat in Brazil. Given the importance of buckwheat in Brazil, with extensive use as forage, cover crop, and its nutritional properties, this report is essential to specific management measures are adopted to avoid further losses.

15.
Bone ; 160: 116397, 2022 07.
Article in English | MEDLINE | ID: mdl-35342016

ABSTRACT

The cellular and molecular mechanisms of bone development and homeostasis are clinically important, but not fully understood. Mutations in integrins and Kindlin3 in humans known as Leukocyte adhesion deficiencies (LAD) cause a wide spectrum of complications, including osteopetrosis. Yet, the rarity, frequent misdiagnosis, and lethality of LAD preclude mechanistic analysis of skeletal abnormalities in these patients. Here, using inducible and constitutive tissue-specific Kindlin3 knockout (K3KO) mice, we show that the constitutive lack of embryonic-Kindlin3 in myeloid lineage cells causes growth retardation, edentulism, and skull deformity indicative of hydrocephaly. Micro-CT analysis revealed craniosynostosis, choanal stenosis, and micrognathia along with other skeletal abnormalities characteristic of osteopetrosis. A marked progression of osteosclerosis occurs in mature to middle-aged adults, resulting in the narrowing of cranial nerve foramina and bone marrow cavities of long bones. However, postnatal-Kindlin3 is less critical for bone remodeling and architecture. Thus, myeloid Kindlin3 is essential for skeletal development and its deficiency leads to autosomal recessive osteopetrosis (ARO). The study will aid in the diagnosis, management, and treatment choices for patients with LAD-III and ARO.


Subject(s)
Osteopetrosis , Animals , Bone Remodeling , Bone and Bones , Humans , Mice , Middle Aged , Mutation/genetics , Osteopetrosis/diagnostic imaging , Osteopetrosis/genetics
16.
J Chem Theory Comput ; 17(11): 7134-7145, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34676761

ABSTRACT

Spectroscopy simulations are of paramount importance for the interpretation of experimental electronic spectra, the disentangling of overlapping spectral features, and the tracing of the microscopic origin of the observed signals. Linear and nonlinear simulations are based on the results drawn from electronic structure calculations that provide the necessary parameterization of the molecular systems probed by light. Here, we investigate the applicability of excited-state properties obtained from linear-response time-dependent density functional theory (TDDFT) in the description of nonlinear spectra by employing the pseudowavefunction approach and compare them with benchmarks from highly accurate RASSCF/RASPT2 calculations and with high temporal resolution experimental results. As a test case, we consider the prediction of femtosecond transient absorption and two-dimensional electronic spectroscopy of a perylene bisimide dye in solution. We find that experimental signals are well reproduced by both theoretical approaches, showing that the computationally cheaper TDDFT can be a suitable option for the simulation of nonlinear spectroscopy of molecular systems that are too large to be treated with higher-level RASSCF/RASPT2 methods.

17.
Sensors (Basel) ; 21(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34372286

ABSTRACT

Direction finding (DF) systems are used to determine the direction-of-arrival (DoA) of electromagnetic waves, thus allowing for the tracking of RF sources. In this paper, we present an alternative formulation of antenna arrays for modeling DF systems. To improve the accuracy of the data provided by the DF systems, the effects of mutual coupling in the array, polarization of the received waves, and impedance mismatches in the RF front-end receiver are all taken into account in the steering vectors of the DoA algorithms. A closed-form expression, which uses scattering parameter data and active-element patterns, is derived to compute the receiver output voltages. Special attention is given to the analysis of wave polarization relative to the DF system orientation. Applying the formulation introduced here, a complete characterization of the received waves is accomplished without the need for system calibration techniques. The validation of the proposed model is carried out by measurements of a 2.2 GHz DF system running a MUSIC algorithm. Tests are performed with a linear array of printed monopoles and with a planar microstrip antenna array having polarization diversity. The experimental results show DoA estimation errors below 6° and correct classification of the polarization of incoming waves, confirming the good performance of the developed formulation.

18.
J Chem Phys ; 154(18): 184110, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34241025

ABSTRACT

Computation of intermolecular interactions is a challenge in drug discovery because accurate ab initio techniques are too computationally expensive to be routinely applied to drug-protein models. Classical force fields are more computationally feasible, and force fields designed to match symmetry adapted perturbation theory (SAPT) interaction energies can remain accurate in this context. Unfortunately, the application of such force fields is complicated by the laborious parameterization required for computations on new molecules. Here, we introduce the component-based machine-learned intermolecular force field (CLIFF), which combines accurate, physics-based equations for intermolecular interaction energies with machine-learning models to enable automatic parameterization. The CLIFF uses functional forms corresponding to electrostatic, exchange-repulsion, induction/polarization, and London dispersion components in SAPT. Molecule-independent parameters are fit with respect to SAPT2+(3)δMP2/aug-cc-pVTZ, and molecule-dependent atomic parameters (atomic widths, atomic multipoles, and Hirshfeld ratios) are obtained from machine learning models developed for C, N, O, H, S, F, Cl, and Br. The CLIFF achieves mean absolute errors (MAEs) no worse than 0.70 kcal mol-1 in both total and component energies across a diverse dimer test set. For the side chain-side chain interaction database derived from protein fragments, the CLIFF produces total interaction energies with an MAE of 0.27 kcal mol-1 with respect to reference data, outperforming similar and even more expensive methods. In applications to a set of model drug-protein interactions, the CLIFF is able to accurately rank-order ligand binding strengths and achieves less than 10% error with respect to SAPT reference values for most complexes.

19.
J Am Chem Soc ; 143(29): 11072-11079, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34270895

ABSTRACT

Bimolecular catalyst decomposition is a fundamental, long-standing challenge in olefin metathesis. Emerging ruthenium-cyclic(alkyl)(amino)carbene (CAAC) catalysts, which enable breakthrough advances in productivity and general robustness, are now known to be extraordinarily susceptible to this pathway. The details of the process, however, have hitherto been obscure. The present study provides the first detailed mechanistic insights into the steric and electronic factors that govern bimolecular decomposition. Described is a combined experimental and theoretical study that probes decomposition of the key active species, RuCl2(L)(py)(═CH2) 1 (in which L is the N-heterocyclic carbene (NHC) H2IMes, or a CAAC ligand: the latter vary in the NAr group (NMes, N-2,6-Et2C6H3, or N-2-Me,6-iPrC6H3) and the substituents on the quaternary site flanking the carbene carbon (i.e., CMe2 or CMePh)). The transiently stabilized pyridine adducts 1 were isolated by cryogenic synthesis of the metallacyclobutanes, addition of pyridine, and precipitation. All are shown to decompose via second-order kinetics at -10 °C. The most vulnerable CAAC species, however, decompose more than 1000-fold faster than the H2IMes analogue. Computational studies reveal that the key factor underlying accelerated decomposition of the CAAC derivatives is their stronger trans influence, which weakens the Ru-py bond and increases the transient concentration of the 14-electron methylidene species, RuCl2(L)(═CH2) 2. Fast catalyst initiation, a major design goal in olefin metathesis, thus has the negative consequence of accelerating decomposition. Inhibiting bimolecular decomposition offers major opportunities to transform catalyst productivity and utility, and to realize the outstanding promise of olefin metathesis.


Subject(s)
Alkenes/chemistry , Coordination Complexes/chemistry , Methane/analogs & derivatives , Ruthenium/chemistry , Catalysis , Coordination Complexes/chemical synthesis , Methane/chemistry , Molecular Conformation
20.
Organometallics ; 40(12): 1811-1816, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34295013

ABSTRACT

Clean, high-yielding routes are described to ruthenium-diiodide catalysts that were recently shown to enable high productivity in olefin metathesis. For the second-generation Grubbs and Hoveyda catalysts (GII: RuCl2(H2IMes)(PCy3)(=CHPh); HII: RuCl2(H2IMes)(=CHAr), Ar = C6H4-2-O i Pr), slow salt metathesis is shown to arise from the low lability of the ancillary PCy3 or ether ligands, which retards access to the four-coordinate intermediate required for efficient halide exchange. To exploit the lability of the first-generation catalysts, the diiodide complex RuI2(PCy3)(=CHAr) HI-I 2 was prepared by treating "Grubbs I" (RuCl2(PCy3)2(=CHPh), GI) with NaI, H2C=CHAr (1a), and a phosphine-scavenging Merrifield iodide (MF-I) resin. Subsequent installation of H2IMes or cyclic (alkyl)(amino)carbene (CAAC) ligands afforded the second-generation iodide catalysts in good to excellent yields. Given the incompatibility of the nitro group with a free carbene, the iodo-Grela catalyst RuI2(H2IMes)(=CHAr') (nG-I 2 : Ar' = C6H3-2-O i Pr-4-NO2) was instead accessed by sequential salt metathesis of GI with NaI, installation of H2IMes, and finally cross-metathesis with the nitrostyrenyl ether H2C=CHAr' (1b), with MF-I as the phosphine scavenger. The bulky iodide ligands improve the selectivity for macrocyclization in ring-closing metathesis.

SELECTION OF CITATIONS
SEARCH DETAIL