Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 297: 105125, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38364905

ABSTRACT

Leptospira is a genus of bacteria that includes free-living saprophytic species found in water or soil, and pathogenic species, which are the etiologic agents of leptospirosis. Besides all the efforts, there are only a few proteins described as virulence factors in the pathogenic strain L. interrogans. This work aims to perform L. biflexa serovar Patoc1 strain Paris global proteome and to compare with the proteome database of pathogenic L. interrogans serovar Copenhageni strain Fiocruz L1-130. We identified a total of 2327 expressed proteins of L. biflexa by mass spectrometry. Using the Get Homologues software with the global proteome of L. biflexa and L. interrogans, we found orthologous proteins classified into conserved, low conserved, and specific proteins. Comparative bioinformatic analyses were performed to understand the biological functions of the proteins, subcellular localization, the presence of signal peptide, structural domains, and motifs using public softwares. These results lead to the selection of 182 low conserved within the saprophyte, and 176 specific proteins of L. interrogans. It is anticipated that these findings will indicate further studies to uncover virulence factors in the pathogenic strain. This work presents for the first time the global proteome of saprophytic strain L. biflexa serovar Patoc, strain Patoc1. SIGNIFICANCE: The comparative analysis established an array of specific proteins in pathogenic strain that will narrow down the identification of immune protective proteins that will help fight leptospirosis.


Subject(s)
Leptospira interrogans , Leptospira , Leptospirosis , Humans , Proteome/metabolism , Virulence Factors/metabolism
2.
Front Cell Infect Microbiol ; 11: 777709, 2021.
Article in English | MEDLINE | ID: mdl-34900757

ABSTRACT

Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is considered a neglected infectious disease of human and veterinary concern. Our group has been investigating proteins annotated as hypothetical, predicted to be located on the leptospiral surface. Because of their location, these proteins may have the ability to interact with various host components, which could allow establishment of the infection. These proteins act as adherence factors by binding to host receptor molecules, such as the extracellular matrix (ECM) components laminin and glycosaminoglycans to help bacterial colonization. Leptospira also interacts with the host fibrinolytic system, which has been demonstrated to be a powerful tool for invasion mechanisms. The interaction with fibrinogen and thrombin has been shown to reduce fibrin clot formation. Additionally, the degradation of coagulation cascade components by secreted proteases or by acquired surface plasmin could also play a role in reducing clot formation, hence facilitating dissemination during infection. Interaction with host complement system regulators also plays a role in helping bacteria to evade the immune system, facilitating invasion. Interaction of Leptospira to cell receptors, such as cadherins, can contribute to investigate molecules that participate in virulence. To achieve a better understanding of the host-pathogen interaction, leptospiral mutagenesis tools have been developed and explored. This work presents several proteins that mediate binding to components of the ECM, plasma, components of the complement system and cells, to gather research achievements that can be helpful in better understanding the mechanisms of leptospiral-host interactions and discuss genetic manipulation for Leptospira spp. aimed at protein function validation.


Subject(s)
Leptospira interrogans , Leptospira , Leptospirosis , Host-Pathogen Interactions , Humans , Motivation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...