Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 469: 133954, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38484657

ABSTRACT

Globally, rice is becoming more vulnerable to arsenic (As) pollution, posing a serious threat to public food safety. Previously Debaryomyces hansenii was found to reduce grain As content of rice. To better understand the underlying mechanism, we performed a genome analysis to identify the key genes in D. hansenii responsible for As tolerance and plant growth promotion. Notably, genes related to As resistance (ARR, Ycf1, and Yap) were observed in the genome of D. hansenii. The presence of auxin pathway and glutathione metabolism-related genes may explain the plant growth-promoting potential and As tolerance mechanism of this novel yeast strain. The genome annotation of D. hansenii indicated that it contains a repertoire of genes encoding antioxidants, well corroborated with the in vitro studies of GST, GR, and glutathione content. In addition, the effect of D. hansenii on gene expression profiling of rice plants under As stress was also examined. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed 307 genes, annotated in D. hansenii-treated rice, related to metabolic pathways (184), photosynthesis (12), glutathione (10), tryptophan (4), and biosynthesis of secondary metabolite (117). Higher expression of regulatory elements like AUX/IAA and WRKY transcription factors (TFs), and defense-responsive genes dismutases, catalases, peroxiredoxin, and glutaredoxins during D. hansenii+As exposure was also observed. Combined analysis revealed that D. hansenii genes are contributing to stress mitigation in rice by supporting plant growth and As-tolerance. The study lays the foundation to develop yeast as a beneficial biofertilizer for As-prone areas.


Subject(s)
Arsenic , Debaryomyces , Oryza , Debaryomyces/genetics , Debaryomyces/metabolism , Oryza/metabolism , Arsenic/toxicity , Arsenic/metabolism , Saccharomyces cerevisiae/genetics , Gene Expression Profiling , Glutathione/metabolism
2.
Bioresour Technol ; 373: 128750, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36796731

ABSTRACT

Free cyanide is a hazardous pollutant released from steel industries. Environmentally-safe remediation of cyanide-contaminated wastewater is required. In this work, Pseudomonas stutzeri (ASNBRI_B12), Trichoderma longibrachiatum (ASNBRI_F9), Trichoderma saturnisporum (ASNBRI_F10) and Trichoderma citrinoviride (ASNBRI_F14) were isolated from blast-furnace wastewater and activated-sludge by enrichment culture. Elevated microbial growth, rhodanese activity (82 %) and GSSG (128 %) were observed with 20 mg-CN L-1. Cyanide degradation > 99 % on 3rd d as evaluated through ion chromatography, followed by first-order kinetics (r2 = 0.94-0.99). Cyanide degradation in wastewater (20 mg-CN L-1, pH 6.5) was studied in ASNBRI_F10 and ASNBRI_F14 which displayed increased biomass to 49.7 % and 21.6 % respectively. Maximum cyanide degradation of 99.9 % in 48 h was shown by an immobilized consortium of ASNBRI_F10 and ASNBRI_F14. FTIR analysis revealed that cyanide treatment alters functional groups on microbial cell walls. The novel consortium of T. saturnisporum-T. citrinoviride in the form of immobilized culture can be employed to treat cyanide-contaminated wastewater.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Cyanides/metabolism , Wastewater , Sewage , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
3.
Environ Pollut ; 320: 120975, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36584855

ABSTRACT

The study aimed to explicate the role of microbial co-inoculants for the mitigation of arsenic (As) toxicity in rice. Arsenate (AsV) reducer yeast Debaryomyces hansenii NBRI-Sh2.11 (Sh2.11) with bacterial strains of different biotransformation potential was attempted to develop microbial co-inoculants. An experiment to test their efficacy (yeast and bacterial strains) on plant growth and As uptake was conducted under a stressed condition of 20 mg kg-1 of arsenite (AsIII). A combination of Sh2.11 with an As(III)-oxidizer, Citrobacter sp. NBRI-B5.12 (B5.12), resulted in ∼90% decrease in grain As content as compared to Sh2.11 alone (∼40%). Reduced As accumulation in rice roots under co-treated condition was validated with SEM-EDS analysis. Enhanced As expulsion in the selected combination under in vitro conditions was found to be correlated with higher As content in the soil during their interaction with plants. Selected co-inoculant mediated enhanced nutrient uptake in association with better production of indole acetic acid (IAA) and gibberellic acid (GA) in shoot, support microbial co-inoculant mediated better biomass under stressful condition. Boosted defense response in association with enhanced glutathione-S-transferase (GST) and glutathione reductase (GR), activities under in vitro and in vivo conditions were observed. These results indicated that the As(III) oxidizer-B5.12 accelerated the As detoxification property of the As(V) reducer-Sh2.11. Henceforth, the results confer that the coupled reduction-oxidation process of the co-inoculant reduces the accumulation of As in rice grain. These co-inoculants can be further developed for field trials to achieve higher biomass with alleviated As toxicity in rice.


Subject(s)
Agricultural Inoculants , Arsenic , Arsenites , Oryza , Soil Pollutants , Arsenates/toxicity , Arsenates/metabolism , Arsenic/toxicity , Arsenic/metabolism , Saccharomyces cerevisiae , Oryza/metabolism , Arsenites/toxicity , Arsenites/metabolism , Bacteria/metabolism , Oxidation-Reduction , Agricultural Inoculants/metabolism , Plant Roots/metabolism , Soil Pollutants/analysis
4.
Environ Monit Assess ; 195(1): 139, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36416991

ABSTRACT

The success of a species in future climate change scenarios depends on its morphological, physiological, and demographic adaptive responses to changing climate. The existence of threatened species against climate adversaries is constrained due to their small population size, narrow genetic base, and narrow niche breadth. We examined if ecological niche model (ENM)-based distribution predictions of species align with their morpho-physiological and demographic responses to future climate change scenarios. We studied three threatened Ilex species, viz., Ilex khasiana Purkay., I. venulosa Hook. f., and I. embelioides Hook. F, with restricted distribution in Indo-Burma biodiversity hotspot. Demographic analysis of the natural populations of each species in Meghalaya, India revealed an upright pyramid suggesting a stable population under the present climate scenario. I. khasiana was confined to higher elevations only while I. venulosa and I. embelioides had wider altitudinal distribution ranges. The bio-climatic niche of I. khasiana was narrow, while the other two species had relatively broader niches. The ENM-predicted potential distribution areas under the current (2022) and future (2050) climatic scenarios (General Circulation Models (GCMs): IPSL-CM5A-LR and NIMR-HADGEM2-AO) revealed that the distribution of highly suitable areas for the most climate-sensitive I. khasiana got drastically reduced. In I. venulosa and I. embelioides, there was an increase in highly suitable areas under the future scenarios. The eco-physiological studies showed marked variation among the species, sites, and treatments (p < 0.05), indicating the differential responses of the three species to varied climate scenarios, but followed a similar trend in species performance aligning with the model predictions.


Subject(s)
Butterflies , Ilex , Animals , Endangered Species , Environmental Monitoring , Climate Change , Population Dynamics
5.
J Hazard Mater ; 428: 128170, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35032955

ABSTRACT

Silicon (Si) has gained considerable attention for its utility in improved plant health under biotic and abiotic stresses through alteration of physiological and metabolic processes. Its interaction with arsenic (As) has been the compelling area of research amidst heavy metal toxicity. However, microbe mediated Si solubilization and their role for reduced As uptake is still an unexplored domain. Foremost role of Bacillus amyloliquefaciens (NBRISN13) in impediment of arsenite (AsIII) translocation signifies our work. Reduced grain As content (52-72%) during SN13 inoculation under feldspar supplementation (Si+SN+As) highlight the novel outcome of our study. Upregulation of Lsi1, Lsi2 and Lsi3genes in Si+SN+As treated rice plants associated with restricted As translocation, frames new propositions for future research on microbemediated reduced As uptake through increased Si transport. In addition to low As accumulation, alleviation of oxidative stress markers by modulation of defense enzyme activities and differential accumulation of plant hormones was found to be associated with improved growth and yield. Thus, our findings confer the potential role of microbe mediated Si solubilization in mitigation of As stress to restore plant growth and yield.


Subject(s)
Arsenic , Bacillus amyloliquefaciens , Oryza , Arsenic/toxicity , Plant Roots , Plants , Silicon/toxicity
6.
Ecotoxicol Environ Saf ; 195: 110480, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32203774

ABSTRACT

Arsenic (As) is a serious threat for environment and human health. Rice, the main staple crop is more prone to As uptake. Bioremediation strategies with heavy metal tolerant rhizobacteria are well known. The main objective of the study was to characterize arsenic-resistant yeast strains, capable of mitigating arsenic stress in rice. Three yeast strains identified as Debaryomyces hansenii (NBRI-Sh2.11), Candida tropicalis (NBRI-B3.4) and Candida dubliniensis (NBRI-3.5) were found to have As reductase activity. D. hansenii with higher As tolerance has As expulsion ability as compared to other two strains. Inoculation of D. hansenii showed improved detoxification through scavenging of reactive oxygen species (ROS) by the modulation of SOD and APX activity under As stress condition in rice. Modulation of defense responsive gene (NADPH, GST, GR) along with arsR and metal cation transporter are the probable mechanism of As detoxification as evident with improved membrane (electrolyte leakage) stability. Reduced grain As (~40% reduction) due to interaction with D. hansenii (NBRI-Sh2.11) further validated it's As mitigation property in rice. To the best of our knowledge D. hansenii has been reported for the first time for arsenic stress mitigation in rice with improved growth and nutrient status of the plant.


Subject(s)
Arsenic/toxicity , Debaryomyces/enzymology , Oryza/drug effects , Agricultural Inoculants , Arsenate Reductases/metabolism , Arsenic/metabolism , Biodegradation, Environmental , Candida/enzymology , Debaryomyces/drug effects , Debaryomyces/genetics , Debaryomyces/metabolism , Oryza/growth & development , Reactive Oxygen Species/metabolism
7.
J Hazard Mater ; 356: 98-107, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29857227

ABSTRACT

Immobilized biomass of novel indigenous fungal strains FNBR_3, FNBR_6, FNBR_13, and FNBR_19 were evaluated for arsenic (As) removal from aqueous solution. Alginate beads containing 0.1 g biomass were used in a batch experiment (200 mg l-1 As; pH 6). Biosorption equilibrium established in first 2 h with As adsorption (mg g-1) as 70, 68, 113 and 90 by FNBR_3, FNBR_6, FNBR_13 and FNBR_19, respectively. The equilibrium was fitted to the Langmuir model (r2 = 0. 90-0.97). The absorption kinetic followed the pseudo second order. Changes in the surface of fungal cells and intracellular As-uptake by fungal biomass were also confirmed by scanning electron microscopy combined with X-ray energy dispersive spectrometer. The presence of different functional groups on fungal cells capable of As-binding was investigated by FTIR. The As-removal by immobilized fungal beads tested in the packed columns also. The As-adsorption by biomass (qe as mg g-1) were recorded as 59.5 (FNBR_3 and FNBR_6), 74.8 (FNBR_13), and 66.3 (FNBR_19) in the column and validated by Thomas model. This is the first report concerning the arsenic removal by immobilized biomass of these novel fungal strains from aqueous solution both in batch and column studies with a prospect of their further industrial application.


Subject(s)
Arsenic/chemistry , Fungi/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Biomass , Hydrogen-Ion Concentration , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...