Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 120(13): e2217084120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943876

ABSTRACT

More than half of all extant metazoan species on earth are insects. The evolutionary success of insects is linked with their ability to osmoregulate, suggesting that they have evolved unique physiological mechanisms to maintain water balance. In beetles (Coleoptera)-the largest group of insects-a specialized rectal ("cryptonephridial") complex has evolved that recovers water from the rectum destined for excretion and recycles it back to the body. However, the molecular mechanisms underpinning the remarkable water-conserving functions of this system are unknown. Here, we introduce a transcriptomic resource, BeetleAtlas.org, for the exceptionally desiccation-tolerant red flour beetle Tribolium castaneum, and demonstrate its utility by identifying a cation/H+ antiporter (NHA1) that is enriched and functionally significant in the Tribolium rectal complex. NHA1 localizes exclusively to a specialized cell type, the leptophragmata, in the distal region of the Malpighian tubules associated with the rectal complex. Computational modeling and electrophysiological characterization in Xenopus oocytes show that NHA1 acts as an electroneutral K+/H+ antiporter. Furthermore, genetic silencing of Nha1 dramatically increases excretory water loss and reduces organismal survival during desiccation stress, implying that NHA1 activity is essential for maintaining systemic water balance. Finally, we show that Tiptop, a conserved transcription factor, regulates NHA1 expression in leptophragmata and controls leptophragmata maturation, illuminating the developmental mechanism that establishes the functions of this cell. Together, our work provides insights into the molecular architecture underpinning the function of one of the most powerful water-conserving mechanisms in nature, the beetle rectal complex.


Subject(s)
Tribolium , Animals , Tribolium/genetics , Tribolium/metabolism , Protons , Antiporters/metabolism , Rectum/metabolism , Water/metabolism
2.
Nat Commun ; 13(1): 692, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121731

ABSTRACT

The intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.


Subject(s)
Drosophila Proteins/metabolism , Eating/physiology , Energy Metabolism/physiology , Gastrointestinal Hormones/metabolism , Homeostasis , Nutrients/metabolism , Somatostatin/metabolism , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Eating/genetics , Energy Metabolism/genetics , Enteroendocrine Cells/metabolism , Gastrointestinal Hormones/genetics , Gene Knockout Techniques , Humans , Hypoglycemia/genetics , Hypoglycemia/metabolism , Insect Hormones/genetics , Insect Hormones/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Somatostatin/genetics , Survival Analysis
3.
Article in English | MEDLINE | ID: mdl-34831540

ABSTRACT

The increasing incidence of extreme wildfire is becoming a concern for public health. Although long-term exposure to wildfire smoke is associated with respiratory illnesses, reports on the association between short-term occupational exposure to wildfire smoke and lung function remain scarce. In this cross-sectional study, we analyzed data from 218 Royal Canadian Mounted Police officers (mean age: 38 ± 9 years) deployed at the Fort McMurray wildfires in 2016. Individual exposure to air pollutants was calculated by integrating the duration of exposure with the air quality parameters obtained from the nearest air quality monitoring station during the phase of deployment. Lung function was measured using spirometry and body plethysmography. Association between exposure and lung function was examined using principal component linear regression analysis, adjusting for potential confounders. In our findings, the participants were predominantly male (71%). Mean forced expiratory volume in 1 s (FEV1), and residual volume (RV) were 76.5 ± 5.9 and 80.1 ± 19.5 (% predicted). A marginal association was observed between air pollution and higher RV [ß: 1.55; 95% CI: -0.28 to 3.37 per interquartile change of air pollution index], but not with other lung function indices. The association between air pollution index and RV was significantly higher in participants who were screened within the first three months of deployment (2.80; 0.91 to 4.70) than those screened later (-0.28; -2.58 to 2.03), indicating a stronger effect of air pollution on peripheral airways. Acute short-term exposure to wildfire-associated air pollutants may impose subtle but clinically important deleterious respiratory effects, particularly in the peripheral airways.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Canada , Cross-Sectional Studies , Environmental Exposure , Humans , Lung , Male , Middle Aged , Particulate Matter/analysis , Particulate Matter/toxicity , Police , Smoke/analysis
4.
Nat Commun ; 12(1): 5178, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462441

ABSTRACT

Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis. Loss of Capa/CapaR signaling causes intestinal hypomotility and impaired nutrient absorption, which gradually deplete internal nutrient stores and reduce organismal lifespan. Conversely, increased Capa/CapaR activity increases fluid and waste excretion. Furthermore, Capa/CapaR inhibits the release of glucagon-like adipokinetic hormone from the corpora cardiaca, which restricts energy mobilization from adipose tissue to avoid harmful hyperglycemia. Our results suggest that the Capa/CapaR circuit occupies a central node in a homeostatic program that facilitates the digestion and absorption of nutrients and regulates systemic energy balance.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Neuropeptides/metabolism , Nutrients/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Energy Metabolism , Female , Homeostasis , Insect Hormones/metabolism , Longevity , Male , Neuropeptides/genetics , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Receptors, G-Protein-Coupled/genetics , Signal Transduction
5.
Article in English | MEDLINE | ID: mdl-32998195

ABSTRACT

Many insulating materials are used in construction, although few have been reported to cause non-malignant respiratory illnesses. We aimed to investigate associations between exposures to insulating materials and non-malignant respiratory illnesses in insulators. In this cross-sectional study, 990 insulators (45 ± 14 years) were screened from 2011-2017 in Alberta. All participants underwent pulmonary function tests and chest radiography. Demographics, work history, and history of chest infections were obtained through questionnaires. Chronic obstructive pulmonary disease (COPD) was diagnosed according to established guidelines. Associations between exposures and respiratory illnesses were assessed by modified Poisson regression. Of those screened, 875 (88%) were males. 457 (46%) participants reported having ≥ 1 chest infection in the past 3 years, while 156 (16%) were diagnosed with COPD. In multivariate models, all materials (asbestos, calcium silicate, carbon fibers, fiberglass, and refractory ceramic fibers) except aerogels and mineral fibers were associated with recurrent chest infections (prevalence ratio [PR] range: 1.18-1.42). Only asbestos was associated with COPD (PR: 1.44; 95% confidence interval [CI]: 1.01, 2.05). Therefore, occupational exposure to insulating materials was associated with non-malignant respiratory illnesses, specifically, recurrent chest infections and COPD. Longitudinal studies are urgently needed to assess the risk of exposure to these newly implemented insulation materials.


Subject(s)
Asbestos/toxicity , Asbestosis/epidemiology , Occupational Diseases/epidemiology , Occupational Exposure/statistics & numerical data , Alberta/epidemiology , Asbestos/analysis , Child , Cross-Sectional Studies , Humans , Male , Mineral Fibers/analysis , Occupational Diseases/etiology , Occupational Exposure/adverse effects
6.
J Infect Public Health ; 12(4): 482-485, 2019.
Article in English | MEDLINE | ID: mdl-30578143

ABSTRACT

BACKGROUND: Avian influenza H9 is endemic in commercial and backyard poultry in Pakistan and is a serious occupational health hazard to industry workers. This study aimed to determine the seroprevalence of avian influenza H9 infection in people working with poultry in Rawalpindi, Pakistan and assess the measures they took to protect themselves from infection. METHODS: A cross-sectional study was conducted from December 2016 to May 2017 of 419 people working with poultry in Rawalpindi Division, including farm workers, vaccinators, field veterinarians, butchers and staff working in diagnostic laboratories. Potential participants were randomly approached and gave written consent to participate. Data were collected using a standardized questionnaire and serum samples were processed to detect H9 antibodies using the haemagglutination inhibition test. RESULTS: Of the 419 participants, 406 (96.9%) were male. The mean age of the participants was 36.4 (SD 10.86) years. A total of 332 participants agreed to a blood test, 167 of whom were positive for A(H9) antibodies, giving an overall seroprevalence of 50.3%. Laboratory staff had the highest seroprevalence (100%) and veterinarians the lowest (38.5%). Vaccinators, butchers and farm workers had a seroprevalence of 83.3%, 52.4% and 45.5% respectively. Personals who used facemasks had significantly lower (P<0.002) seroprevalence (29.6%) than those who never used them (90.6%). Similarly, those who always used gloves and washed their hands with soap had a seroprevalence of 32.8% compared with 89.0% in those who never took these precautions. Of the participants who handled antigens, 92.3% were seropositive. CONCLUSION: Laboratory staff and vaccinators are exposed to viral cultures and influenza vaccines respectively which may explain their high seroprevalence.


Subject(s)
Antibodies, Viral/blood , Farmers/statistics & numerical data , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Occupational Exposure/statistics & numerical data , Poultry/virology , Adult , Animal Husbandry , Animals , Cross-Sectional Studies , Female , Humans , Influenza A Virus, H9N2 Subtype , Influenza, Human/transmission , Male , Middle Aged , Pakistan/epidemiology , Risk Factors , Seroepidemiologic Studies , Surveys and Questionnaires
7.
Insect Sci ; 25(5): 778-786, 2018 Oct.
Article in English | MEDLINE | ID: mdl-28316131

ABSTRACT

RNA interference (RNAi) of vital insect genes is a potential tool for targeted pest control. However, selection of the right target genes is a challenge because the RNAi efficacy is known to vary among insect species. Cotton mealybug, Phenacoccus solenopsis, is a phloem-feeding economically important crop pest. We evaluated the RNAi of 2 vital genes, Bursicon (PsBur) and V-ATPase (PsV-ATPase) as potential targets in P. solenopsis for its control. PCR fragments of PsBur and PsV-ATPase were amplified using cDNA synthesized from the total RNA. The PCR amplicons were cloned into Potato virus X (PVX) to develop recombinant PVX for the inoculation of Nicotiana tabacum plants for bioassays with healthy P. solenopsis. Reverse-transcription-polymerase chain reaction (RT-PCR) was used to validate the expression of transgenes in the recombinant-PVX-inoculated plants (treated), and suppression of the target genes in the mealybugs exposed to them. The RT-PCR confirmed the expression of transgenes in the treated plants. Mealybug individuals on treated plants either died or showed physical deformities. Further, the population of mealybug was significantly reduced by feeding on N. tabacum expressing RNAi triggers against PsBur and PsV-ATPase. The results conclude that RNAi is activated in P. solenopsis by feeding on N. tabacum expressing RNAi triggering elements of PsBur and PsV-ATPase genes through recombinant PVX vector. Further, V-ATPase and Bursicon genes are potential targets for RNAi-mediated control of P. solenopsis.


Subject(s)
Genes, Insect/genetics , Hemiptera/growth & development , Hemiptera/genetics , Pest Control, Biological/methods , RNA Interference , Animals , Female , Insect Control/methods , Male , Microorganisms, Genetically-Modified/genetics , Nymph/genetics , Nymph/growth & development , Plants, Genetically Modified/genetics , Potexvirus/genetics , RNA, Double-Stranded/genetics , Reverse Transcriptase Polymerase Chain Reaction , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...