Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Neuroinflammation ; 21(1): 42, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311721

ABSTRACT

Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.


Subject(s)
CX3C Chemokine Receptor 1 , Chemokine CX3CL1 , Diabetes Mellitus , Animals , Humans , Mice , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Diabetes Mellitus/metabolism , Immunologic Factors , Inflammation/metabolism , Microglia/metabolism , Protein Isoforms , Retina/metabolism
2.
Int J Mol Sci ; 25(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38339005

ABSTRACT

Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.


Subject(s)
Chemokine CX3CL1 , Diabetic Retinopathy , Chemokine CX3CL1/pharmacology , Chemokine CX3CL1/therapeutic use , Diabetes Mellitus/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Microglia/metabolism , Retina/metabolism , Signal Transduction , Diabetes Complications/drug therapy , Animals , Mice
3.
Brain Sci ; 13(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37891846

ABSTRACT

Reelin is an extracellular matrix glycoprotein involved in neuronal migration during embryonic brain development and synaptic plasticity in the adult brain. The role of Reelin in the developing central nervous system has been extensively characterized. Indeed, a loss of Reelin or a disruption in its signaling cascade leads to neurodevelopmental defects and is associated with ataxia, intellectual disability, autism, and several psychiatric disorders. In the adult brain, Reelin is critically involved in neurogenesis and synaptic plasticity. Reelin's signaling potentiates glutamatergic and GABAergic neurotransmission, induces synaptic maturation, and increases AMPA and NMDA receptor subunits' expression and activity. As a result, there is a growing literature reporting that a loss of function and/or reduction of Reelin is implicated in numerous neurodegenerative diseases. The present review summarizes the current state of the literature regarding the implication of Reelin and Reelin-mediated signaling during aging and neurodegenerative disorders, highlighting Reelin as a possible target in the prevention or treatment of progressive neurodegeneration.

4.
JTCVS Open ; 15: 433-445, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37808023

ABSTRACT

Objectives: Palliative treatment of cyanotic congenital heart disease (CCHD) uses systemic-to-pulmonary conduits, often a modified Blalock-Taussig-Thomas shunt (mBTTs). Expanded polytetrafluoroethylene (ePTFE) mBTTs have associated risks for thrombosis and infection. The Human Acellular Vessel (HAV) (Humacyte, Inc) is a decellularized tissue-engineered blood vessel currently in clinical trials in adults for vascular trauma, peripheral artery disease, and end-stage renal disease requiring hemodialysis. In addition to restoring blood flow, the engineered HAV demonstrates the capacity for host cellular remodeling into native-like vasculature. Here we report preclinical evaluation of a small-diameter (3.5 mm) HAV as a mBTTs in a non-human primate model. Methods: We implanted 3.5 mm HAVs as right subclavian artery to pulmonary artery mBTTs in non-immunosuppressed juvenile rhesus macaques (n = 5). HAV patency, structure, and blood flow were assessed by postoperative imaging from 1 week to 6 months. Histology of HAVs and surrounding tissues was performed. Results: Surgical procedures were well tolerated, with satisfactory anastomoses, showing feasibility of using the 3.5 mm HAV as a mBTTs. All macaques had some immunological reactivity to the human extracellular matrix, as expected in this xenogeneic model. HAV mBTTs remained patent for up to 6 months in animals, exhibiting mild immunoreactivity. Two macaques displaying more severe immunoreactivity to the human HAV material developed midgraft dilatation without bleeding or rupture. HAV repopulation by host cells expressing smooth muscle and endothelial markers was observed in all animals. Conclusions: These findings may support use of 3.5 mm HAVs as mBTTs in CCHD and potentially other pediatric vascular indications.

5.
J Med Chem ; 66(16): 11476-11497, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37561958

ABSTRACT

Aiming at the inhaled treatment of pulmonary diseases, the optimization process of the previously reported MAPI compound 92a is herein described. The project was focused on overcoming the chemical stability issue and achieving a balanced bronchodilator/anti-inflammatory profile in rats in order to be confident in a clinical effect without having to overdose at one of the biological targets. The chemical strategy was based on fine-tuning of the substitution pattern in the muscarinic and PDE4 structural portions of the dual pharmacology compounds, also making use of the analysis of a proprietary crystal structure in the PDE4 catalytic site. Compound 10f was identified as a chemically stable, potent, and in vivo balanced MAPI lead compound, as assessed in bronchoconstriction and inflammation assays in rats after intratracheal administration. After the in-depth investigation of the pharmacological and solid-state profile, 10f proved to be safe and suitable for development.


Subject(s)
Phosphodiesterase 4 Inhibitors , Pulmonary Disease, Chronic Obstructive , Rats , Animals , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Bronchodilator Agents/pharmacology , Bronchodilator Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy
6.
Cell Signal ; 109: 110763, 2023 09.
Article in English | MEDLINE | ID: mdl-37315752

ABSTRACT

Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.


Subject(s)
Extracellular Matrix Proteins , Serine Endopeptidases , Mice , Animals , Humans , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Extracellular Matrix Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , HEK293 Cells , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Disease Models, Animal , Luciferases/metabolism , Cognition , Receptors, LDL/metabolism
7.
J Neuroinflammation ; 20(1): 127, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37245027

ABSTRACT

BACKGROUND: Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. METHODS: Lung infection in mice was induced by instilling Pseudomonas aeruginosa (PA) intratracheally. We determined bacterial colonization in tissue, microvascular leakage, expression of cytokines and leukocyte infiltration into the brain. RESULTS: Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 h and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + CD45+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) and adherens junction (AJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. CONCLUSIONS: Lung bacterial infection is associated with BBB disruption and behavioral changes, which are mediated by systemic cytokine release.


Subject(s)
Blood-Brain Barrier , Pseudomonas aeruginosa , Mice , Animals , Blood-Brain Barrier/metabolism , Pseudomonas aeruginosa/metabolism , Neuroinflammatory Diseases , Cytokines/metabolism , Lung , Tumor Necrosis Factor-alpha/metabolism
8.
Eur J Neurosci ; 57(10): 1657-1670, 2023 05.
Article in English | MEDLINE | ID: mdl-36945758

ABSTRACT

Reelin, a large extracellular glycoprotein, plays a critical role in prenatal brain development and postnatally in synaptic plasticity, learning and memory. Dysregulation of Reelin signalling has been implicated in several neuropsychiatric disorders including schizophrenia, autism, depression and Alzheimer's disease. Previous studies have demonstrated that Reelin's central fragment, R3456, binds to ApoER2, inducing ApoER2 clustering and subsequent intracellular signalling. We previously reported the development of a novel luciferase complementation assay, which we used to demonstrate that R3456 can lead to ApoER2 receptor dimerization. Using this same assay, we explored various smaller fragments and combinations from R3456, and we identified a construct of repeats 3 and 6 (R36), which could still elicit equivalent receptor dimerization. The purpose of this study was to test R36 for biological effects in vitro and in vivo. We show that R36 was capable of initiating intracellular signalling in primary neuronal cultures. In addition, we demonstrate that a single intracerebroventricular injection of R36 protein into a model of Reelin deficiency, the heterozygous reeler mice, can significantly improve cognition. These data support a role for the new construct R36 to enhance the Reelin pathway, and the future possibility of exploring gene therapy approaches with R36 in diseases characterized by reduced levels of Reelin.


Subject(s)
Cell Adhesion Molecules, Neuronal , Extracellular Matrix Proteins , Mice , Animals , Extracellular Matrix Proteins/genetics , Mice, Neurologic Mutants , Cell Adhesion Molecules, Neuronal/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Nerve Tissue Proteins/metabolism , Carrier Proteins
9.
bioRxiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36747856

ABSTRACT

Background: Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. Methods: Pneumonia was induced in adult C57BL/6 mice by intratracheal inoculation of Pseudomonas aeruginosa (PA). Solute extravasation, histology, immunofluorescence, RT-PCR, multiphoton imaging and neurological testing were performed in this study. Results: Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 hours and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b+ cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. Conclusions: These results suggest that lung bacterial infection causes cerebral microvascular leakage and neuroinflammation via a mechanism involving cytokine-induced BBB injury.

10.
Res Sq ; 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36778380

ABSTRACT

Background Severe lung infection can lead to brain dysfunction and neurobehavioral disorders. The mechanisms that regulate the lung-brain axis of inflammatory response to respiratory infection are incompletely understood. This study examined the effects of lung infection causing systemic and neuroinflammation as a potential mechanism contributing to blood-brain barrier (BBB) leakage and behavioral impairment. Methods Pneumonia was induced in adult C57BL/6 mice by intratracheal inoculation of Pseudomonas aeruginosa (PA). Solute extravasation, histology, immunofluorescence, RT-PCR, multiphoton imaging and neurological testing were performed in this study. Results Lung infection caused alveolar-capillary barrier injury as indicated by leakage of plasma proteins across pulmonary microvessels and histopathological characteristics of pulmonary edema (alveolar wall thickening, microvessel congestion, and neutrophil infiltration). PA also caused significant BBB dysfunction characterized by leakage of different sized molecules across cerebral microvessels and a decreased expression of cell-cell junctions (VE-cadherin, claudin-5) in the brain. BBB leakage peaked at 24 hours and lasted for 7 days post-inoculation. Additionally, mice with lung infection displayed hyperlocomotion and anxiety-like behaviors. To test whether cerebral dysfunction was caused by PA directly or indirectly, we measured bacterial load in multiple organs. While PA loads were detected in the lungs up to 7 days post-inoculation, bacteria were not detected in the brain as evidenced by negative cerebral spinal fluid (CSF) cultures and lack of distribution in different brain regions or isolated cerebral microvessels. However, mice with PA lung infection demonstrated increased mRNA expression in the brain of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), chemokines (CXCL-1, CXCL-2) and adhesion molecules (VCAM-1 and ICAM-1) along with CD11b + cell recruitment, corresponding to their increased blood levels of white cells (polymorphonuclear cells) and cytokines. To confirm the direct effect of cytokines on endothelial permeability, we measured cell-cell adhesive barrier resistance and junction morphology in mouse brain microvascular endothelial cell monolayers, where administration of IL-1ß induced a significant reduction of barrier function coupled with tight junction (TJ) diffusion and disorganization. Combined treatment with IL-1ß and TNFα augmented the barrier injury. Conclusions These results suggest that lung bacterial infection causes cerebral microvascular leakage and neuroinflammation via a mechanism involving cytokine-induced BBB injury.

11.
Glia ; 71(2): 245-258, 2023 02.
Article in English | MEDLINE | ID: mdl-36106533

ABSTRACT

Fractalkine (FKN) is a membrane-bound chemokine that can be cleaved by proteases such as ADAM 10, ADAM 17, and cathepsin S to generate soluble fragments. Studies using different forms of the soluble FKN yield conflicting results in vivo. These observations prompted us to investigate the function and pharmacology of two commonly used isoforms of FKN, a human full-length soluble FKN (sFKN), and a human chemokine domain only FKN (cdFKN). Both are prevalent in the literature and are often assumed to be functionally equivalent. We observed that recombinant sFKN and cdFKN exhibit similar potencies in a cell-based cAMP assay, but binding affinity for CX3CR1 was modestly different. There was a 10-fold difference in potency between sFKN and cdFKN when assessing their ability to stimulate ß-arrestin recruitment. Interestingly, high concentrations of FKN, regardless of cleavage variant, were ineffective at reducing pro-inflammatory microglial activation and may induce a pro-inflammatory response. This effect was observed in mouse and rat primary microglial cells as well as microglial cell lines. The inflammatory response was exacerbated in aged microglia, which is known to exhibit age-related inflammatory phenotypes. We observed the same effects in Cx3cr1-/- primary microglia and therefore speculate that an alternative FKN receptor may exist. Collectively, these data provide greater insights into the function and pharmacology of these common FKN reagents, which may clarify conflicting reports and urge greater caution in the selection of FKN peptides for use in in vitro and in vivo studies and the interpretation of results obtained using these differing peptides.


Subject(s)
Chemokine CX3CL1 , Microglia , Mice , Rats , Humans , Animals , Aged , Chemokine CX3CL1/metabolism , Microglia/metabolism , Proteolysis , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cell Line
12.
Exp Neurol ; 357: 114170, 2022 11.
Article in English | MEDLINE | ID: mdl-35863501

ABSTRACT

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is characterized by autistic behaviors, childhood seizures, and deficits in learning and memory. FXS has a loss of function of the FMR1 gene that leads to a lack of Fragile X Mental Retardation Protein (FMRP) expression. FMRP is critical for synaptic plasticity, spatial learning, and memory. Reelin is a large extracellular glycoprotein essential for synaptic plasticity and numerous neurodevelopmental processes. Reduction in Reelin signaling is implicated as a contributing factor in disease etiology in several neurological disorders, including schizophrenia, and autism. However, the role of Reelin in FXS is poorly understood. We demonstrate a reduction in Reelin in Fmr1 knock-out (KO) mice, suggesting that a loss of Reelin activity may contribute to FXS. We demonstrate here that Reelin signaling enhancement via a single intracerebroventricular injection of the Reelin central fragment into Fmr1 KO mice can profoundly rescue cognitive deficits in hidden platform water maze and fear conditioning, as well as hyperactivity during the open field. Improvements in behavior were associated with rescued levels of post synaptic marker in Fmr1 KO mice when compared to controls. These data suggest that increasing Reelin signaling in FXS could offer a novel therapeutic for improving cognition in FXS.


Subject(s)
Fragile X Syndrome , Animals , Cognition , Dietary Supplements , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Mice , Mice, Knockout
13.
Neurotherapeutics ; 19(4): 1329-1339, 2022 07.
Article in English | MEDLINE | ID: mdl-35534672

ABSTRACT

The rare genetic neurodevelopmental disease Angelman syndrome (AS) is caused by the loss of function of UBE3A, a ubiquitin ligase. The disease results in a lifetime of severe symptoms, including intellectual disability and motor impairments for which there are no effective treatments. One avenue of treatment for AS is the use of gene therapy to reintroduce a functional copy of the UBE3A gene. Our group had previously shown that recombinant adeno-associated virus (rAAV) expressing mouse Ube3a could rescue deficits in a mouse model of AS. Here, we expand on this work and show that this approach could be successfully replicated in a second AS model using the human UBE3A gene. Furthermore, we address the challenge of limited vector distribution in the brain by developing a novel modified form of UBE3A. This modified protein, termed STUB, was designed with a secretion signal and a cell-penetrating peptide. This allowed transduced cells to act as factories for the production of UBE3A protein that could be taken up by neighboring non-transduced cells, thus increasing the number of neurons receiving the therapeutic protein. Combining this construct with intracerebroventricular injections to maximize rAAV distribution within the brain, we demonstrate that this novel approach improves the recovery of behavioral and electrophysiological deficits in the AS rat model. More importantly, a comparison of rAAV-STUB to a rAAV expressing the normal human UBE3A gene showed that STUB was a more effective therapeutic. These data suggest that rAAV-STUB is a new potential approach for the treatment of AS.


Subject(s)
Angelman Syndrome , Cell-Penetrating Peptides , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Rats , Angelman Syndrome/genetics , Angelman Syndrome/therapy , Cell-Penetrating Peptides/genetics , Genetic Therapy , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/genetics
14.
Mol Cell Neurosci ; 120: 103724, 2022 05.
Article in English | MEDLINE | ID: mdl-35367589

ABSTRACT

We recently generated a novel Angelman syndrome (AS) rat model with a complete Ube3a gene deletion, that recapitulates the loss of UBE3A protein and shows cognitive and EEG deficits. We also recently published the identification of extracellular UBE3A protein within the brain using microdialysis. Here we explored the effects of supplementation of exogenous UBE3A protein to hippocampal slices and intrahippocampal injection of AS rats. We report that the AS rat model demonstrates deficits in hippocampal long-term potentiation (LTP) which can be recovered with the application of exogenous UBE3A protein. Furthermore, injection of recombinant UBE3A protein into the hippocampus of the AS rat can rescue the associative learning and memory deficits seen in the fear conditioning task. These data suggest that extracellular UBE3A protein may play a role in synaptic function, LTP induction and hippocampal-dependent memory formation.


Subject(s)
Angelman Syndrome , Angelman Syndrome/drug therapy , Angelman Syndrome/genetics , Angelman Syndrome/metabolism , Animals , Dietary Supplements , Disease Models, Animal , Hippocampus/metabolism , Long-Term Potentiation , Rats , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
Geroscience ; 44(1): 173-194, 2022 02.
Article in English | MEDLINE | ID: mdl-34410588

ABSTRACT

C-terminal cleaved tau at D421 (∆D421-tau) accumulates in the brains of Alzheimer's disease (AD) patients. However, it is unclear how tau truncation, an understudied tau post-translational modification, contributes to AD pathology and progression. Utilizing an adeno-associated virus (AAV) gene delivery-based approach, we overexpressed full-length tau (FL-tau) and ∆D421-tau in 4- and 12-month-old mice for 4 months to study the neuropathological impact of accumulation in young adult (8-month) and middle-aged (16-month) mice. Overall, we show that independent of the tau species, age was an important factor facilitating tau phosphorylation, oligomer formation, and deposition into silver-positive tangles. However, mice overexpressing ∆D421-tau exhibited a distinct phosphorylation profile to those overexpressing FL-tau and increased tau oligomerization in the middle-age group. Importantly, overexpression of ∆D421-tau, but not FL-tau in middle-aged mice, resulted in pronounced cognitive impairments and hippocampal long-term potentiation deficits. While both FL-tau and ∆D421-tau induced neuronal loss in mice with age, ∆D421-tau led to significant neuronal loss in the CA3 area of the hippocampus and medial entorhinal cortex compared to FL-tau. Based on our data, we conclude that age increases the susceptibility to neuronal degeneration associated with ΔD421-tau accumulation. Our findings suggest that ΔD421-tau accumulation contributes to synaptic plasticity and cognitive deficits, thus representing a potential target for tau-associated pathologies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/genetics , Animals , Cognition , Cognitive Dysfunction/pathology , Humans , Mice , Mice, Inbred C57BL , Neuronal Plasticity
16.
Pharmacol Ther ; 231: 107989, 2022 03.
Article in English | MEDLINE | ID: mdl-34492237

ABSTRACT

Neuroinflammation was initially thought of as a consequence of neurodegenerative disease pathology, but more recently it is becoming clear that it plays a significant role in the development and progression of disease. Thus, neuroinflammation is seen as a realistic and valuable therapeutic target for neurodegeneration. Neuroinflammation can be modulated by neuron-glial signaling through various soluble factors, and one such critical modulator is Fractalkine or C-X3-C Motif Chemokine Ligand 1 (CX3CL1). CX3CL1 is produced in neurons and is a unique chemokine that is initially translated as a transmembrane protein but can be proteolytically processed to generate a soluble chemokine. CX3CL1 has been shown to signal through its sole receptor CX3CR1, which is located on microglial cells within the central nervous system (CNS). Although both the membrane bound and soluble forms of CX3CL1 appear to interact with CX3CR1, they do seem to have different signaling capabilities. It is believed that the predominant function of CX3CL1 within the CNS is to reduce the proinflammatory response and many studies have shown neuroprotective effects. However, in some cases CX3CL1 appears to be promoting neurodegeneration. This review focusses on presenting a comprehensive overview of the complex nature of CX3CL1/CX3CR1 signaling in neurodegeneration and how it may present as a therapeutic in some neurodegenerative diseases but not others. The role of CX3CL1/CXCR1 is reviewed in the context of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), ischemia, retinopathies, spinal cord and neuropathic pain, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy.


Subject(s)
Chemokine CX3CL1 , Neurodegenerative Diseases , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Humans , Microglia/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neuroglia/metabolism
17.
Front Neurol ; 12: 685802, 2021.
Article in English | MEDLINE | ID: mdl-34512509

ABSTRACT

Widespread transduction of the CNS with a single, non-invasive systemic injection of adeno-associated virus is now possible due to the creation of blood-brain barrier-permeable capsids. However, as these capsids are mutants of AAV9, they do not have specific neuronal tropism. Therefore, it is necessary to use genetic tools to restrict expression of the transgene to neuronal tissues. Here we compare the strength and specificity of two neuron-specific promoters, human synapsin 1 and mouse calmodulin/calcium dependent kinase II, to the ubiquitous CAG promoter. Administration of a high titer of virus is necessary for widespread CNS transduction. We observed the neuron-specific promoters drive comparable overall expression in the brain to the CAG promoter. Furthermore, the neuron-specific promoters confer significantly less transgene expression in peripheral tissues compared with the CAG promoter. Future experiments will utilize these delivery platforms to over-express the Alzheimer-associated pathological proteins amyloid-beta and tau to create mouse models without transgenesis.

18.
Neurochem Int ; 149: 105151, 2021 10.
Article in English | MEDLINE | ID: mdl-34348124

ABSTRACT

Diabetes Mellitus (DM) is a major comorbid condition that increases susceptibility to stroke. Intracerebral hemorrhage (ICH), a devastating type of stroke, accounts for only 13% of the total stroke cases but is associated with higher mortality. Multimorbid models of DM and ischemic stroke have been widely studied; however, fewer pieces of evidence are available on the impact of DM on the outcomes of ICH injury. In this study, we investigated the effect of DM on ICH-induced injury and cognitive impairments. Streptozotocin (STZ) induced type-I DM (T1DM) animal model was used, and experimental ICH was induced by intrastriatal injection of collagenase. Our results demonstrated that DM is associated with a significant increase in hematoma volume and deficits in post-stroke locomotor, sensorimotor, and cognitive behavior in mice. The levels of neuroinflammation, oxidative/nitrosative stress, and glial cell activation were also increased in the diabetic mice following ICH injury. This study provides a better understanding of the influence of DM comorbidity on hemorrhagic stroke outcomes and uncovers the important pathological mechanisms underlying DM-induced exacerbation of ICH injury.


Subject(s)
Cerebral Hemorrhage/metabolism , Cognitive Dysfunction/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Oxidative Stress/physiology , Stroke/metabolism , Animals , Cerebral Hemorrhage/chemically induced , Cognitive Dysfunction/chemically induced , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 1/chemically induced , Hand Strength/physiology , Inflammation Mediators/metabolism , Locomotion/drug effects , Locomotion/physiology , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Streptozocin/toxicity , Stroke/chemically induced
19.
J Med Chem ; 64(13): 9100-9119, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34142835

ABSTRACT

In this paper, we report the discovery of dual M3 antagonist-PDE4 inhibitor (MAPI) compounds for the inhaled treatment of pulmonary diseases. The identification of dual compounds was enabled by the intuition that the fusion of a PDE4 scaffold derived from our CHF-6001 series with a muscarinic scaffold through a common linking ring could generate compounds active versus both the transmembrane M3 receptor and the intracellular PDE4 enzyme. Two chemical series characterized by two different muscarinic scaffolds were investigated. SAR optimization was aimed at obtaining M3 nanomolar affinity coupled with nanomolar PDE4 inhibition, which translated into anti-bronchospastic efficacy ex vivo (inhibition of rat trachea contraction) and into anti-inflammatory efficacy in vitro (inhibition of TNFα release). Among the best compounds, compound 92a achieved the goal of demonstrating in vivo efficacy and duration of action in both the bronchoconstriction and inflammation assays in rat after intratracheal administration.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Drug Discovery , Phosphodiesterase 4 Inhibitors/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptor, Muscarinic M3/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Guinea Pigs , Male , Molecular Structure , Phosphodiesterase 4 Inhibitors/chemistry , Pulmonary Disease, Chronic Obstructive/metabolism , Rats , Rats, Inbred BN , Rats, Sprague-Dawley , Receptor, Muscarinic M3/metabolism , Structure-Activity Relationship
20.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33531368

ABSTRACT

Angelman syndrome (AS) is a neurodevelopmental disorder with unique behavioral phenotypes, seizures, and distinctive electroencephalographic (EEG) patterns. Recent studies identified motor, social communication, and learning and memory deficits in a CRISPR engineered rat model with a complete maternal deletion of the Ube3a gene. It is unknown whether this model recapitulates other aspects of the clinical disorder. We report here the effect of Ube3a maternal deletion in the rat on epileptiform activity, seizure threshold, and quantitative EEG. Using video-synchronized EEG (vEEG) monitoring, we assessed spectral power and epileptiform activity early postnatally through adulthood. While EEG power was similar to wild-type (WT) at 1.5 weeks postnatally, at all other ages analyzed, our findings were similar to the AS phenotype in mice and humans with significantly increased δ power. Analysis of epileptiform activity in juvenile and adult rats showed increased time spent in epileptiform activity in AS compared with WT rats. We evaluated seizure threshold using pentylenetetrazol (PTZ), audiogenic stimulus, and hyperthermia to provoke febrile seizures (FSs). Behavioral seizure scoring following PTZ induction revealed no difference in seizure threshold in AS rats, however behavioral recovery from the PTZ-induced seizure was longer in the adult group with significantly increased hippocampal epileptiform activity during this phase. When exposed to hyperthermia, AS rat pups showed a significantly lower temperature threshold to first seizure than WT. Our findings highlight an age-dependence for the EEG and epileptiform phenotypes in a preclinical model of AS, and support the use of quantitative EEG and increased δ power as a potential biomarker of AS.


Subject(s)
Angelman Syndrome , Angelman Syndrome/genetics , Animals , Electroencephalography , Gene Deletion , Mice , Phenotype , Rats , Seizures/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL