Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JACC Cardiovasc Interv ; 14(3): 304-315, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33541541

ABSTRACT

OBJECTIVES: The aim of this study was to understand the anatomy of periarterial nerve distribution in human accessory renal arteries (ARAs). BACKGROUND: Renal denervation is a promising technique for blood pressure control. Despite the high prevalence of ARAs, the anatomic distribution of periarterial nerves around ARAs remains unknown. METHODS: Kidneys with surrounding tissues were collected from human autopsy subjects, and histological evaluation was performed using morphometric software. An ARA was defined as an artery arising from the aorta above or below the dominant renal artery (DRA) or an artery that bifurcated within 20 mm of the takeoff of the DRA from the aorta. The DRA was defined as an artery that perfused >50% of the kidney. RESULTS: A total of 7,287 nerves from 14 ARAs and 9 DRAs were evaluated. The number of nerves was smaller in the ARA than DRA (median: 30 [interquartile range: 17.5 to 48.5] vs. 49 [interquartile range: 36 to 76]; p < 0.0001). In both ARAs and DRAs, the distance from the arterial lumen to nerve was shortest in the distal, followed by the middle and proximal segments. On the basis of the post-mortem angiography, ARAs were divided into large (≥3 mm diameter) and small (<3 mm) groups. The number of nerves was greatest in the DRA, followed by the large and small ARA groups (53 [41 to 97], 38 [25 to 53], and 24.5 [10.5 to 36.3], respectively; p = 0.001). CONCLUSIONS: ARAs showed a smaller number of nerves than DRAs, but these results were dependent on the size of the ARA. Ablation, especially in large ARAs, may allow more complete denervation with the potential to further reduce blood pressure.


Subject(s)
Renal Artery Obstruction , Renal Artery , Sympathetic Nervous System , Humans , Kidney , Sympathectomy , Treatment Outcome
2.
J Clin Invest ; 127(1): 183-198, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27893463

ABSTRACT

The AXL receptor and its activating ligand, growth arrest-specific 6 (GAS6), are important drivers of metastasis and therapeutic resistance in human cancers. Given the critical roles that GAS6 and AXL play in refractory disease, this signaling axis represents an attractive target for therapeutic intervention. However, the strong picomolar binding affinity between GAS6 and AXL and the promiscuity of small molecule inhibitors represent important challenges faced by current anti-AXL therapeutics. Here, we have addressed these obstacles by engineering a second-generation, high-affinity AXL decoy receptor with an apparent affinity of 93 femtomolar to GAS6. Our decoy receptor, MYD1-72, profoundly inhibited disease progression in aggressive preclinical models of human cancers and induced cell killing in leukemia cells. When directly compared with the most advanced anti-AXL small molecules in the clinic, MYD1-72 achieved superior antitumor efficacy while displaying no toxicity. Moreover, we uncovered a relationship between AXL and the cellular response to DNA damage whereby abrogation of AXL signaling leads to accumulation of the DNA-damage markers γH2AX, 53BP1, and RAD51. MYD1-72 exploited this relationship, leading to improvements upon the therapeutic index of current standard-of-care chemotherapies in preclinical models of advanced pancreatic and ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Leukemia/drug therapy , Neoplasms, Experimental/drug therapy , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Animals , Biomarkers, Tumor/genetics , Cell Line, Tumor , Histones/genetics , Histones/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Leukemia/metabolism , Mice , Mice, Nude , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
3.
Virus Genes ; 46(3): 441-6, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23338931

ABSTRACT

Metagenomic characterization of water virome was performed in four Mississippi catfish ponds. Although differing considerably from African swine fever virus (ASFV), 48 of 446,100 sequences from 12 samples were similar enough to indicate that they represent new members in the family Asfarviridae. At present, ASFV is the only member of Asfarviridae, and this study presents the first indication of a similar virus in North America. At this point, there is no indication that the identified virus(es) pose a threat to human or animal health, and further study is needed to characterize their potential risks to both public health and agricultural development.


Subject(s)
Asfarviridae/classification , Asfarviridae/genetics , Metagenomics , Ponds/virology , Rivers/virology , Animals , Aquaculture , Asfarviridae/isolation & purification , Catfishes , North America
SELECTION OF CITATIONS
SEARCH DETAIL
...