Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Int Dent J ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39232939

ABSTRACT

BACKGROUND: During preclinical training, dental students take radiographs of acrylic (plastic) blocks containing extracted patient teeth. With the digitisation of medical records, a central archiving system was created to store and retrieve all x-ray images, regardless of whether they were images of teeth on acrylic blocks, or those from patients. In the early stage of the digitisation process, and due to the immaturity of the data management system, numerous images were mixed up and stored in random locations within a unified archiving system, including patient record files. Filtering out and expunging the undesired training images is imperative as manual searching for such images is problematic. Hence the aim of this stidy was to differentiate intraoral images from artificial images on acrylic blocks. METHODS: An artificial intelligence (AI) solution to automatically differentiate between intraoral radiographs taken of patients and those taken of acrylic blocks was utilised in this study. The concept of transfer learning was applied to a dataset provided by a Dental Hospital. RESULTS: An accuracy score, F1 score, and a recall score of 98.8%, 99.2%, and 100%, respectively, were achieved using a VGG16 pre-trained model. These results were more sensitive compared to those obtained initally using a baseline model with 96.5%, 97.5%, and 98.9% accuracy score, F1 score, and a recall score respectively. CONCLUSIONS: The proposed system using transfer learning was able to accurately identify "fake" radiographs images and distinguish them from the real intraoral images.

2.
BMC Med Inform Decis Mak ; 24(1): 179, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915001

ABSTRACT

With the outbreak of COVID-19 in 2020, countries worldwide faced significant concerns and challenges. Various studies have emerged utilizing Artificial Intelligence (AI) and Data Science techniques for disease detection. Although COVID-19 cases have declined, there are still cases and deaths around the world. Therefore, early detection of COVID-19 before the onset of symptoms has become crucial in reducing its extensive impact. Fortunately, wearable devices such as smartwatches have proven to be valuable sources of physiological data, including Heart Rate (HR) and sleep quality, enabling the detection of inflammatory diseases. In this study, we utilize an already-existing dataset that includes individual step counts and heart rate data to predict the probability of COVID-19 infection before the onset of symptoms. We train three main model architectures: the Gradient Boosting classifier (GB), CatBoost trees, and TabNet classifier to analyze the physiological data and compare their respective performances. We also add an interpretability layer to our best-performing model, which clarifies prediction results and allows a detailed assessment of effectiveness. Moreover, we created a private dataset by gathering physiological data from Fitbit devices to guarantee reliability and avoid bias.The identical set of models was then applied to this private dataset using the same pre-trained models, and the results were documented. Using the CatBoost tree-based method, our best-performing model outperformed previous studies with an accuracy rate of 85% on the publicly available dataset. Furthermore, this identical pre-trained CatBoost model produced an accuracy of 81% when applied to the private dataset. You will find the source code in the link: https://github.com/OpenUAE-LAB/Covid-19-detection-using-Wearable-data.git .


Subject(s)
Artificial Intelligence , COVID-19 , Early Diagnosis , Humans , COVID-19/diagnosis , Heart Rate/physiology , Wearable Electronic Devices
3.
Diagnostics (Basel) ; 13(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835814

ABSTRACT

Despite the declining COVID-19 cases, global healthcare systems still face significant challenges due to ongoing infections, especially among fully vaccinated individuals, including adolescents and young adults (AYA). To tackle this issue, cost-effective alternatives utilizing technologies like Artificial Intelligence (AI) and wearable devices have emerged for disease screening, diagnosis, and monitoring. However, many AI solutions in this context heavily rely on supervised learning techniques, which pose challenges such as human labeling reliability and time-consuming data annotation. In this study, we propose an innovative unsupervised framework that leverages smartwatch data to detect and monitor COVID-19 infections. We utilize longitudinal data, including heart rate (HR), heart rate variability (HRV), and physical activity measured via step count, collected through the continuous monitoring of volunteers. Our goal is to offer effective and affordable solutions for COVID-19 detection and monitoring. Our unsupervised framework employs interpretable clusters of normal and abnormal measures, facilitating disease progression detection. Additionally, we enhance result interpretation by leveraging the language model Davinci GPT-3 to gain deeper insights into the underlying data patterns and relationships. Our results demonstrate the effectiveness of unsupervised learning, achieving a Silhouette score of 0.55. Furthermore, validation using supervised learning techniques yields high accuracy (0.884 ± 0.005), precision (0.80 ± 0.112), and recall (0.817 ± 0.037). These promising findings indicate the potential of unsupervised techniques for identifying inflammatory markers, contributing to the development of efficient and reliable COVID-19 detection and monitoring methods. Our study shows the capabilities of AI and wearables, reflecting the pursuit of low-cost, accessible solutions for addressing health challenges related to inflammatory diseases, thereby opening new avenues for scalable and widely applicable health monitoring solutions.

4.
Artif Intell Med ; 127: 102276, 2022 05.
Article in English | MEDLINE | ID: mdl-35430037

ABSTRACT

Cancer is one of the most dangerous diseases to humans, and yet no permanent cure has been developed for it. Breast cancer is one of the most common cancer types. According to the National Breast Cancer Foundation, in 2020 alone, more than 276,000 new cases of invasive breast cancer and more than 48,000 non-invasive cases were diagnosed in the US. To put these figures in perspective, 64% of these cases are diagnosed early in the disease's cycle, giving patients a 99% chance of survival. Artificial intelligence and machine learning have been used effectively in detection and treatment of several dangerous diseases, helping in early diagnosis and treatment, and thus increasing the patient's chance of survival. Deep learning has been designed to analyze the most important features affecting detection and treatment of serious diseases. For example, breast cancer can be detected using genes or histopathological imaging. Analysis at the genetic level is very expensive, so histopathological imaging is the most common approach used to detect breast cancer. In this research work, we systematically reviewed previous work done on detection and treatment of breast cancer using genetic sequencing or histopathological imaging with the help of deep learning and machine learning. We also provide recommendations to researchers who will work in this field.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Humans , Machine Learning
5.
Sensors (Basel) ; 22(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408114

ABSTRACT

Creating deepfake multimedia, and especially deepfake videos, has become much easier these days due to the availability of deepfake tools and the virtually unlimited numbers of face images found online. Research and industry communities have dedicated time and resources to develop detection methods to expose these fake videos. Although these detection methods have been developed over the past few years, synthesis methods have also made progress, allowing for the production of deepfake videos that are harder and harder to differentiate from real videos. This research paper proposes an improved optical flow estimation-based method to detect and expose the discrepancies between video frames. Augmentation and modification are experimented upon to try to improve the system's overall accuracy. Furthermore, the system is trained on graphics processing units (GPUs) and tensor processing units (TPUs) to explore the effects and benefits of each type of hardware in deepfake detection. TPUs were found to have shorter training times compared to GPUs. VGG-16 is the best performing model when used as a backbone for the system, as it achieved around 82.0% detection accuracy when trained on GPUs and 71.34% accuracy on TPUs.


Subject(s)
Optic Flow , Computers , Deception
6.
Sensors (Basel) ; 21(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34960517

ABSTRACT

Physiological measures, such as heart rate variability (HRV) and beats per minute (BPM), can be powerful health indicators of respiratory infections. HRV and BPM can be acquired through widely available wrist-worn biometric wearables and smartphones. Successive abnormal changes in these indicators could potentially be an early sign of respiratory infections such as COVID-19. Thus, wearables and smartphones should play a significant role in combating COVID-19 through the early detection supported by other contextual data and artificial intelligence (AI) techniques. In this paper, we investigate the role of the heart measurements (i.e., HRV and BPM) collected from wearables and smartphones in demonstrating early onsets of the inflammatory response to the COVID-19. The AI framework consists of two blocks: an interpretable prediction model to classify the HRV measurements status (as normal or affected by inflammation) and a recurrent neural network (RNN) to analyze users' daily status (i.e., textual logs in a mobile application). Both classification decisions are integrated to generate the final decision as either "potentially COVID-19 infected" or "no evident signs of infection". We used a publicly available dataset, which comprises 186 patients with more than 3200 HRV readings and numerous user textual logs. The first evaluation of the approach showed an accuracy of 83.34 ± 1.68% with 0.91, 0.88, 0.89 precision, recall, and F1-Score, respectively, in predicting the infection two days before the onset of the symptoms supported by a model interpretation using the local interpretable model-agnostic explanations (LIME).


Subject(s)
COVID-19 , Wearable Electronic Devices , Artificial Intelligence , Humans , SARS-CoV-2 , Smartphone
7.
Waste Manag ; 109: 231-246, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32428727

ABSTRACT

The waste management processes typically involve numerous technical, climatic, environmental, demographic, socio-economic, and legislative parameters. Such complex nonlinear processes are challenging to model, predict and optimize using conventional methods. Recently, artificial intelligence (AI) techniques have gained momentum in offering alternative computational approaches to solve solid waste management (SWM) problems. AI has been efficient at tackling ill-defined problems, learning from experience, and handling uncertainty and incomplete data. Although significant research was carried out in this domain, very few review studies have assessed the potential of AI in solving the diverse SWM problems. This systematic literature review compiled 85 research studies, published between 2004 and 2019, analyzing the application of AI in various SWM fields, including forecasting of waste characteristics, waste bin level detection, process parameters prediction, vehicle routing, and SWM planning. This review provides comprehensive analysis of the different AI models and techniques applied in SWM, application domains and reported performance parameters, as well as the software platforms used to implement such models. The challenges and insights of applying AI techniques in SWM are also discussed.


Subject(s)
Solid Waste , Waste Management , Artificial Intelligence , Forecasting , Software
8.
Heliyon ; 5(2): e01235, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30815605

ABSTRACT

Open source software (OSS) is increasingly being integrated into educational institutions, and many countries require the use of OSS in government departments. However, not much focus is placed on integrating it into the educational sector in a strategic and productive manner. This paper examines the existing literature on the use of OSS in terms of the potential enhancements it can provide for computer science studies in high schools in general, and those in the UAE more specifically. It also details a survey conducted among 400 high school teachers after teaching them about multiple types of OSS that might enhance their teaching experience. After examining more than 69 different research papers and taking the survey findings into account, we drafted a roadmap that can be used by any educational institute-especially high schools-to strategically integrate OSS into the educational system.

SELECTION OF CITATIONS
SEARCH DETAIL