Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 19(8): e202400045, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38375590

ABSTRACT

In the realm of material science, carbon materials, especially olive-derived carbon (ODC), have become vital due to their sustainability and diverse properties. This review examines the sustainable extraction and use of ODC, a carbohydrate-rich by-product of olive biomass. We focus on innovative preparation techniques like pyrolysis, which are crucial forenhancing ODC's microstructure and surface properties. Variables such as activating agents, impregnation ratios, and pyrolysis conditions significantly influence these properties. ODC's high specific surface area renders it invaluable for applications in energy storage (batteries and supercapacitors) and environmental sectors (water purification, hydrogen storage). Its versatility and accessibility underscore its potential for broad industrial use, makingit as a key element in sustainable development. This review provides a detailed analysis of ODC preparation methodologies, its various applications, and its role in advancing sustainable energy solutions. We highlight the novelty of ODC research and its impact on future studies, establishing this review as a crucial resource for researchers and practitioners in sustainable carbon materials. As global focus shifts towards eco-friendly solutions, ODC emerges as a critical component in shaping a sustainable, innovation-driven future.

2.
Chem Asian J ; : e202301007, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311592

ABSTRACT

Reducing CO2 emissions is an urgent global priority. In this context, several mitigation strategies, including CO2 tax and stringent legislation, have been adopted to halt the deterioration of the natural environment. Also, carbon recycling procedures undoubtedly help reduce net emissions into the atmosphere, enhancing sustainability. Utilizing Earth's abundant CO2 to produce high-potential green chemicals and light fuels opens new avenues for the chemical industry. In this context, many attempts have been devoted to converting CO2 as a feedstock into various value-added chemicals, such as CH4 , lower methanol, light olefins, gasoline, and higher hydrocarbons, for numerous applications involving various catalytic reactions. Although several CO2 -conversion methods have been used, including electrochemical, photochemical, and biological approaches, the hydrogenation method allows the reaction to be tuned to produce the targeted compound without significantly altering infrastructure. This review discusses the numerous hydrogenation routes and their challenges, such as catalyst design, operation, and the combined art of structure-activity relationships for the various product formations.

3.
Chem Rec ; 24(1): e202300216, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37651034

ABSTRACT

In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.

4.
Chem Asian J ; : e202301012, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100493

ABSTRACT

To combat with energy crisis considering clean energy, oxygen evolution reaction (OER) is crucial to implement electrolytic hydrogen fuel production in real life. Here, straightforward chemical synthesis pathways are followed to prepare cobalt tetraoxide nanoparticles (Co3 O4 NPs) in an alkaline OER process using poly[(2-methacryloyloxy)ethyl]trimethylammonium chloride (Co3 O4 NPs@PMTC) as support to prevent aggregation. In material characterization, the X-ray diffraction (XRD) pattern confirms the crystallinity of the synthesized Co3 O4 NPs@PMTC, and Raman spectroscopy indicates that the Co3 O4 NPs contain cubic close-packed oxides. The morphological analysis reveals the wrinkle-like disruption which is distributed evenly owing to the folded nanosheet arrays. Energy-dispersive X-ray spectroscopy indicates the presence of a significant number of cobalt atoms in the Co3 O4 NPs, and elemental mapping analysis demonstrates the composition of the NPs. At a current density of 10 mA cm-2 , oxygen is emitted at 1.67 V delivering an overpotential of 440 mV. This unique structure of Co3 O4 NPs@PMTC provides beneficial functions that are responsible for a large number of active sites and the rapid release of oxygen gas with long-term stability. Through kinetic study, we found a Tafel slope of 48.9 mV dec-1 which proves the catalytic behavior of Co3 O4 NPs@PMTC is promising toward the OER process.

5.
Chem Rec ; 23(5): e202300039, 2023 May.
Article in English | MEDLINE | ID: mdl-37078876

ABSTRACT

The disposal of red mud (RM), a waste material generated by the aluminum industry, remains a global environmental concern because of its high alkalinity and smaller particle size, which have the potential to pollute air, soil, and water. Recently, efforts have been made to develop a strategy for reusing industrial byproducts, such as RM, and turning waste into value-added products. The use of RM as (i) a supplementary cementitious material for construction and building materials, such as cement, concrete, bricks, ceramics, and geopolymers, and (ii) a catalyst is discussed in this review. Furthermore, the physical, chemical, mineralogical, structural, and thermal properties of RM, as well as its environmental impact, are also discussed in this review. It is possible to conclude that using RM in catalysis, cement, and construction industries is the most efficient way to recycle this byproduct on a large scale. However, the low cementitious properties of RM can be attributed to a reduction in the fresh and mechanical properties of composites incorporating RM. On the other hand, RM can be used as an efficient active catalyst to synthesize organic molecules and reduce air pollution, which not only makes use of solid waste but also lowers the price of the catalyst. The review provides basic information on the characterization of RM and its suitability in various applications, paving the way for more advanced research on the sustainable disposal of RM waste. Future research perspectives on the utilization of RM are also addressed.

6.
Chem Asian J ; 18(11): e202201254, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37026400

ABSTRACT

A catalytic system for selective transformation of furfural into biofuel is highly desirable. However, selective hydrogenation of the C=O group over the furan ring of furfural to produce ether in one step is challenging. Here, we report the preparation of a series of magnetically recoverable FeCo@GC nano-alloys (37-40 nm). Fe3 O4 (3-5 nm) and MOF-71 (Co), used as the Co and C source, were mixed together in a range of Fe/Co ratios, and then encapsulated in a graphitic carbon (GC) shell to prepare such alloys. STEM-HAADF shows the darker core made of FeCo and the shell of graphitic carbon. Furfural is hydrogenated to produce >99% isopropyl furfuryl ether in isopropanol with >99% conversion at 170 °C under 40 bars of H2 , whereas n-chain alcohol, such as ethanol, produces corresponding ethyl levulinate in 93%. The synergistic effect due to the charge transfer from Fe to Co leads to higher reactivity of FeCo@GC. The catalyst, which can be separated from the reaction medium using a simple magnet without significant damage to the surface or composition, retained its reactivity and selectivity for up to four consecutive cycles.

7.
J Fluoresc ; 26(1): 1-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26573285

ABSTRACT

A new highly selective, chromogenic, and fluorogenic Cu(2+) chemosensor, fluorescein-N-methylimidazole conjugate 1, and another fluorescein-N-imidazole conjugate 2 were synthesized and investigated by UV-visible and fluorescence spectroscopy. The sensing of Cu(2+) quenches the emission band of 1 at λmax = 525 nm, with an association constant (K a = 1.0 x 10(7) M(-1)) and a stoichiometry of 1:1 in a buffered H2O: MeOH solution (4:1, pH = 7.4). The Cu(2+) detection limit for chemosensor 1 is 37 nM. The presence of the N-methyl group in 1 increased the Cu(2+) binding selectivity, resulting in a stronger binding constant and a broader pH working range (pH 5-10) in comparison to 2. The fluorescence in 1 and 2 is caused by electron transfer phenomenon from the imidazole nitrogen to fluorescein, which is readily inhibited by Cu(2+) binding.

SELECTION OF CITATIONS
SEARCH DETAIL
...