Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 19(5): e1011388, 2023 05.
Article in English | MEDLINE | ID: mdl-37167325

ABSTRACT

There is a growing consensus that a significant proportion of recurrent urinary tract infections are linked to the persistence of uropathogens within the urinary tract and their re-emergence upon the conclusion of antibiotic treatment. Studies in mice and human have revealed that uropathogenic Escherichia coli (UPEC) can persist in bladder epithelial cells (BECs) even after the apparent resolution of the infection. Here, we found that, following the entry of UPEC into RAB27b+ fusiform vesicles in BECs, some bacteria escaped into the cytoplasmic compartment via a mechanism involving hemolysin A (HlyA). However, these UPEC were immediately recaptured within LC3A/B+ autophagosomes that matured into LAMP1+ autolysosomes. Thereafter, HlyA+ UPEC-containing lysosomes failed to acidify, which is an essential step for bacterial elimination. This lack of acidification was related to the inability of bacteria-harboring compartments to recruit V-ATPase proton pumps, which was attributed to the defragmentation of cytosolic microtubules by HlyA. The persistence of UPEC within LAMP1+ compartments in BECs appears to be directly linked to HlyA. Thus, through intravesicular instillation of microtubule stabilizer, this host defense response can be co-opted to reduce intracellular bacterial burden following UTIs in the bladder potentially preventing recurrence.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Mice , Humans , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/physiology , Hemolysin Proteins , Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Epithelial Cells/microbiology , Lysosomes/pathology , Hydrogen-Ion Concentration
2.
Proc Natl Acad Sci U S A ; 119(33): e2117904119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939684

ABSTRACT

Many urinary tract infections (UTIs) are recurrent because uropathogens persist within the bladder epithelial cells (BECs) for extended periods between bouts of infection. Because persistent uropathogens are intracellular, they are often refractive to antibiotic treatment. The recent discovery of endogenous Lactobacillus spp. in the bladders of healthy humans raised the question of whether these endogenous bacteria directly or indirectly impact intracellular bacterial burden in the bladder. Here, we report that in contrast to healthy women, female patients experiencing recurrent UTIs have a bladder population of Lactobacilli that is markedly reduced. Exposing infected human BECs to L. crispatus in vitro markedly reduced the intracellular uropathogenic Escherichia coli (UPEC) load. The adherence of Lactobacilli to BECs was found to result in increased type I interferon (IFN) production, which in turn enhanced the expression of cathepsin D within lysosomes harboring UPECs. This lysosomal cathepsin D-mediated UPEC killing was diminished in germ-free mice and type I IFN receptor-deficient mice. Secreted metabolites of L. crispatus seemed to be responsible for the increased expression of type I IFN in human BECs. Intravesicular administration of Lactobacilli into UPEC-infected murine bladders markedly reduced their intracellular bacterial load suggesting that components of the endogenous microflora can have therapeutic effects against UTIs.


Subject(s)
Antibiosis , Escherichia coli Infections , Interferon Type I , Lactobacillus crispatus , Urinary Bladder , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Biological Therapy , Cathepsin D/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy , Female , Humans , Immunity, Innate , Interferon Type I/immunology , Lactobacillus crispatus/physiology , Male , Mice , Urinary Bladder/immunology , Urinary Bladder/microbiology , Urinary Tract Infections/immunology , Urinary Tract Infections/microbiology , Urinary Tract Infections/therapy , Uropathogenic Escherichia coli/growth & development
3.
Biomedicines ; 9(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34829729

ABSTRACT

Urothelial bladder cancer (UBC) is one of the most prevalent and aggressive malignancies. Recent evidence indicates that the tumor microenvironment (TME), including a variety of immune cells, is a critical modulator of tumor initiation, progression, evolution, and treatment resistance. Mast cells (MCs) in UBC are possibly involved in tumor angiogenesis, tissue remodeling, and immunomodulation. Moreover, tumor-infiltration by MCs has been reported in early-stage UBC patients. This infiltration is linked with a favorable or unfavorable prognosis depending on the tumor type and location. Despite the discrepancy of MC function in tumor progression, MCs can modify the TME to regulate the immunity and infiltration of tumors by producing an array of mediators. Nonetheless, the precise role of MCs in UBC tumor progression and evolution remains unknown. Thus, this review discusses some critical roles of MCs in UBC. Patients with UBC are treated at both early and late stages by immunotherapeutic methods, including intravenous bacillus Calmette-Guérin instillation and immune checkpoint blockade. An understanding of the patient response and resistance mechanisms in UBC is required to unlock the complete potential of immunotherapy. Since MCs are pivotal to understand the underlying processes and predictors of therapeutic responses in UBC, our review also focuses on possible immunotherapeutic treatments that involve MCs.

4.
J Biomol Struct Dyn ; 35(4): 791-804, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26984239

ABSTRACT

Malaria is an endemic disease caused by the protozoan parasite Plasomodium falciparum. Febrifugine analogues are natural compound obtained from the traditional Chinese herbs have shown significant antimalarial and anticancerous efficacy in experimental model. Development of resistance against the existing antimalarial drug has alarmed the scientific innovators to find a potential antimalarial molecule which can be further used by endemic countries for the elimination of this disease. In this study, structure-based virtual screening and molecular dynamics (MD) base approaches were used to generate potential antimalarial compound against plasmepsin II and prolyl-tRNA synthetase of Plasmodium. Here, we have docked series of febrifugine analogues (n = 11,395) against plasmepsin II in three different docking modes and then it was compared with previously reported target prolyl-tRNA synthetase. Extra precision docking resulted into 235 ligands having better docking score were subject for QikProp analysis. Better ligands (n = 39) obtained from QikProp analysis were subject for ADMET prediction and docking protocol validation through the estimation of receiver operator characteristics. In the later stage, 24 ligands obtained from ADMET study were subject for the estimation of binding energy through MM-GBSA and same were also docked against prolyl-tRNA synthetase to get compounds with dual inhibitor role. Finally, MD simulation and 2D fingerprint MACCS study of two best ligands have shown significant interaction with plasmepsin II and homology against known active ligand with noteworthy MACCS index, respectively. This study concludes that FA12 could be potential drug candidate to fight against Plasmodium falciparum parasites.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Antimalarials/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Molecular Dynamics Simulation , Piperidines/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Quinazolines/pharmacology , Amino Acyl-tRNA Synthetases/metabolism , Aspartic Acid Endopeptidases/metabolism , Drug Design , Drug Evaluation, Preclinical , Humans , Molecular Conformation , Molecular Structure , Protein Binding , Protozoan Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...