Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(43): 48327-48340, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36269223

ABSTRACT

Near-infrared (NIR) light-activated photosensitization represents an encouraging therapeutic method in photodynamic therapy, especially for deep tissue penetration. In this context, two-photon activation, i.e., utilization of photons with relatively low energy but high photon flux for populating a virtual intermediate state leading to an excited state, is attractive. This concept would be highly advantageous in photodynamic therapy due to its minimal side effects. Herein, we propose that the combination of plasma protein serum albumin (HSA) containing several Ru complexes and NIR two-photon excitable carbon nanodots (Cdots), termed HSA-Ru-Cdots, provides several attractive features for enhancing singlet oxygen formation within the mitochondria of cancer cells stimulated by two-photon excitation in the NIR region. HSA-Ru-Cdot features biocompatibility, water solubility, and photostability as well as uptake into cancer cells with an endosomal release, which is an essential feature for subcellular targeting of mitochondria. The NIR two-photon excitation induced visible emission of the Cdots allows fluorescence resonance energy transfer (FRET) to excite the metal-to-ligand charge transfer of the Ru moiety, and fluorescence-lifetime imaging microscopy (FLIM) has been applied to demonstrate FRET within the cells. The NIR two-photon excitation is indirectly transferred to the Ru complexes, which leads to the production of singlet oxygen within the mitochondria of cancer cells. Consequently, we observe the destruction of filamentous mitochondrial structures into spheroid aggregates within various cancer cell lines. Cell death is induced by the long-wavelength NIR light irradiation at 810 nm with a low power density (7 mW/cm2), which could be attractive for phototherapy applications where deeper tissue penetration is crucial.


Subject(s)
Photochemotherapy , Ruthenium , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Singlet Oxygen/metabolism , Carbon , Photochemotherapy/methods
2.
Histochem Cell Biol ; 157(6): 697-702, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35267057

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) allows the characterization of cellular metabolism by quantifying the rate of free and unbound nicotinamide adenine dinucleotide hydrogen (NADH). This study delineates the correlative imaging of cells with FLIM and electron microscopy (EM). Human fibroblasts were cultivated in a microscopy slide bearing a coordinate system and FLIM measurement was conducted. Following chemical fixation, embedding in Epon and cutting with an ultramicrotome, tomograms of selected cells were acquired with a scanning transmission electron microscope (STEM). Correlative imaging of antimycin A-treated fibroblasts shows a decrease in fluorescence lifetime as well as swollen mitochondria with large cavities in STEM tomography. To our knowledge, this is the first correlative FLIM and EM workflow. Combining the high sensitivity of FLIM with the high spatial resolution of EM could boost the research of pathophysiological processes involving cell metabolism, such as cancer, neurodegenerative disorders, and viral infection.


Subject(s)
Electron Microscope Tomography , Optical Imaging , Humans , Microscopy, Electron , Microscopy, Fluorescence , Workflow
3.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073057

ABSTRACT

Metabolic FLIM (fluorescence lifetime imaging) is used to image bioenergetic status in cells and tissue. Whereas an attribution of the fluorescence lifetime of coenzymes as an indicator for cell metabolism is mainly accepted, it is debated whether this is valid for the redox state of cells. In this regard, an innovative algorithm using the lifetime characteristics of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) to calculate the fluorescence lifetime induced redox ratio (FLIRR) has been reported so far. We extended the FLIRR approach and present new results, which includes FLIM data of the various enzymes, such as NAD(P)H, FAD, as well as flavin mononucleotide (FMN). Our algorithm uses a two-exponential fitting procedure for the NAD(P)H autofluorescence and a three-exponential fit of the flavin signal. By extending the FLIRR approach, we introduced FLIRR1 as protein-bound NAD(P)H related to protein-bound FAD, FLIRR2 as protein-bound NAD(P)H related to free (unbound) FAD and FLIRR3 as protein-bound NAD(P)H related to protein-bound FMN. We compared the significance of extended FLIRR to the metabolic index, defined as the ratio of protein-bound NAD(P)H to free NAD(P)H. The statistically significant difference for tumor and normal cells was found to be highest for FLIRR1.


Subject(s)
Flavin Mononucleotide/chemistry , Flavin-Adenine Dinucleotide/chemistry , NADP/chemistry , Optical Imaging/methods , Biochemical Phenomena , HaCaT Cells , Humans , Oxidation-Reduction
4.
Sensors (Basel) ; 20(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731347

ABSTRACT

The development of sensitive biosensors, such as gallium nitride (GaN)-based quantum wells, transistors, etc., often makes it necessary to functionalize GaN surfaces with small molecules or even biomolecules, such as proteins. As a first step in surface functionalization, we have investigated silane adsorption, as well as the formation of very thin silane layers. In the next step, the immobilization of the tetrameric protein streptavidin (as well as the attachment of chemically modified iron transport protein ferritin (ferritin-biotin-rhodamine complex)) was realized on these films. The degree of functionalization of the GaN surfaces was determined by fluorescence measurements with fluorescent-labeled proteins; silane film thickness and surface roughness were estimated, and also other surface sensitive techniques were applied. The formation of a monolayer consisting of adsorbed organosilanes was accomplished on Mg-doped GaN surfaces, and also functionalization with proteins was achieved. We found that very high Mg doping reduced the amount of surface functionalized proteins. Most likely, this finding was a consequence of the lower concentration of ionizable Mg atoms in highly Mg-doped layers as a consequence of self-compensation effects. In summary, we could demonstrate the necessity of Mg doping for achieving reasonable bio-functionalization of GaN surfaces.

5.
Langmuir ; 34(27): 8024-8030, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29905487

ABSTRACT

Several interfacial phenomena are active during polymeric foaming, the dynamics of which significantly influence terminal stability, cell structure, and in turn the thermomechanical properties of temporally evolved foam. Understanding these dynamics is important in achieving desired foam properties. Here, we introduce a method to simultaneously portray the time evolution of bubble growth, lamella thinning, and plateau border drainage, occurring during reactive polymeric foaming. In this method, we initially conduct bulk and surface shear rheology under polymerizing and nonfoaming conditions. In a subsequent step, foaming experiments were conducted in a rheometer. The microscopic structural dimensions pertaining to the terminal values of the dynamics of each interfacial phenomena are then measured using a combination of scanning electron microscopy, optical microscopy, and imaging ellipsometry, after the foaming is over. The measured surface and bulk rheological parameters are incorporated in time evolution equations that are derived from mass and momentum transport occurring when a model viscoelastic fluid is foamed by gas dispersion. Analytical and numerical solutions to these equations portray the dynamics. We demonstrate this method for a series of reactive polyurethane foams generated from different chemical sources. The effectiveness of our method is in simultaneously obtaining these dynamics that are difficult to directly monitor because of short active durations over multiple length scales.

6.
Biomacromolecules ; 16(5): 1525-33, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25857651

ABSTRACT

Poly(glycerol sebacate) (PGS) and its derivatives make up an attractive class of biomaterial owing to their tunable mechanical properties with programmable biodegradability. In practice, however, the application of PGS is often hampered by frequent inconsistency in reproducing process conditions. The inconsistency stems from the volatile nature of glycerol during the esterification process. In this study, we suggest that the degree of esterification (DE) can be used to predict precisely the physical status, the mechanical properties, and the degradation of the PGS materials. Young's modulus is shown to linearly increase with DE, which is in agreement with an entropic spring theory of rubbers. To provide a processing guideline for researchers, we also provide a physical status map as a function of curing temperature and time. The amount of glycerol loss, obtainable by monitoring the evolution of the total mass loss and the DE during synthesis, is shown to make the predictions even more precise. We expect that these strategies can be applicable to different categories of polymers that involve condensation polymerization with the volatility of the reactants. In addition, we demonstrate that microwave-assisted prepolymerization is a time- and energy-efficient pathway to obtain PGS. For example, 15 min of microwave time is shown to be as efficient as prepolymerization in nitrogen atmosphere for 6 h at 130 °C. The quick synthesis method, however, causes a severe evaporation of glycerol, resulting in a large distortion in the monomer ratio between glycerol and sebacic acid. Consequently, more rigid PGS is produced under a similar curing condition compared to the conventional prepolymerization method. Finally, we demonstrate that the addition of molecularly rigid cross-linking agents and network-structured inorganic nanoparticles are also effective in enhancing the mechanical properties of the PGS-derived materials.


Subject(s)
Biocompatible Materials/chemical synthesis , Decanoates/chemical synthesis , Glycerol/analogs & derivatives , Polymers/chemical synthesis , Biocompatible Materials/chemistry , Biodegradable Plastics/chemical synthesis , Biodegradable Plastics/chemistry , Decanoates/chemistry , Glycerol/chemical synthesis , Glycerol/chemistry , Materials Testing , Mechanical Phenomena , Polymers/chemistry , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...