Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Front Immunol ; 14: 1043631, 2023.
Article in English | MEDLINE | ID: mdl-36865556

ABSTRACT

Effective secondary response to antigen is a hallmark of immunological memory. However, the extent of memory CD8 T cell response to secondary boost varies at different times after a primary response. Considering the central role of memory CD8 T cells in long-lived protection against viral infections and tumors, a better understanding of the molecular mechanisms underlying the changing responsiveness of these cells to antigenic challenge would be beneficial. We examined here primed CD8 T cell response to boost in a BALB/c mouse model of intramuscular vaccination by priming with HIV-1 gag-encoding Chimpanzee adenovector, and boosting with HIV-1 gag-encoding Modified Vaccinia virus Ankara. We found that boost was more effective at day(d)100 than at d30 post-prime, as evaluated at d45 post-boost by multi-lymphoid organ assessment of gag-specific CD8 T cell frequency, CD62L-expression (as a guide to memory status) and in vivo killing. RNA-sequencing of splenic gag-primed CD8 T cells at d100 revealed a quiescent, but highly responsive signature, that trended toward a central memory (CD62L+) phenotype. Interestingly, gag-specific CD8 T cell frequency selectively diminished in the blood at d100, relative to the spleen, lymph nodes and bone marrow. These results open the possibility to modify prime/boost intervals to achieve an improved memory CD8 T cell secondary response.


Subject(s)
CD8-Positive T-Lymphocytes , Immunization, Secondary , Immunological Memory Cells , Vaccines , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Cell Division , Mice, Inbred BALB C , Vaccination , Immunological Memory Cells/immunology
3.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430845

ABSTRACT

Facing the COVID-19 pandemic, anti-SARS-CoV-2 vaccines were developed at unprecedented pace, productively exploiting contemporary fundamental research and prior art. Large-scale use of anti-SARS-CoV-2 vaccines has greatly limited severe morbidity and mortality. Protection has been correlated with high serum titres of neutralizing antibodies capable of blocking the interaction between the viral surface protein spike and the host SARS-CoV-2 receptor, ACE-2. Yet, vaccine-induced protection subsides over time, and breakthrough infections are commonly observed, mostly reflecting the decay of neutralizing antibodies and the emergence of variant viruses with mutant spike proteins. Memory CD8 T cells are a potent weapon against viruses, as they are against tumour cells. Anti-SARS-CoV-2 memory CD8 T cells are induced by either natural infection or vaccination and can be potentially exploited against spike-mutated viruses. We offer here an overview of current research about the induction of anti-SARS-CoV-2 memory CD8 T cells by vaccination, in the context of prior knowledge on vaccines and on fundamental mechanisms of immunological memory. We focus particularly on how vaccination by two doses (prime/boost) or more (boosters) promotes differentiation of memory CD8 T cells, and on how the time-length of inter-dose intervals may influence the magnitude and persistence of CD8 T cell memory.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Vaccination , Antibodies, Neutralizing
4.
Cell Biochem Funct ; 40(7): 718-728, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36069062

ABSTRACT

Dendritic cells (DCs) are innate immune cells with a central role in immunity and tolerance. Under steady-state, DCs are scattered in tissues as resting cells. Upon infection or injury, DCs get activated and acquire the full capacity to prime antigen-specific CD4+ and CD8+ T cells, thus bridging innate and adaptive immunity. By secreting different sets of cytokines and chemokines, DCs orchestrate diverse types of immune responses, from a classical proinflammatory to an alternative pro-repair one. DCs are highly heterogeneous, and physiological differences in tissue microenvironments greatly contribute to variations in DC phenotype. Oxygen tension is normally low in some lymphoid areas, including bone marrow (BM) hematopoietic niches; nevertheless, the possible impact of tissue hypoxia on DC physiology has been poorly investigated. We assessed whether DCs are hypoxic in BM and spleen, by staining for hypoxia-inducible-factor-1α subunit (HIF-1α), the master regulator of hypoxia-induced response, and pimonidazole (PIM), a hypoxic marker, and by flow cytometric analysis. Indeed, we observed that mouse DCs have a hypoxic phenotype in spleen and BM, and showed some remarkable differences between DC subsets. Notably, DCs expressing membrane c-kit, the receptor for stem cell factor (SCF), had a higher PIM median fluorescence intensity (MFI) than c-kit- DCs, both in the spleen and in the BM. To determine whether SCF (a.k.a. kit ligand) has a role in DC hypoxia, we evaluated molecular pathways activated by SCF in c-kit+ BM-derived DCs cultured in hypoxic conditions. Gene expression microarrays and gene set enrichment analysis supported the hypothesis that SCF had an impact on hypoxia response and inhibited autophagy-related gene sets. Our results suggest that hypoxic response and autophagy, and their modulation by SCF, can play a role in DC homeostasis at the steady state, in agreement with our previous findings on SCF's role in DC survival.


Subject(s)
CD8-Positive T-Lymphocytes , Stem Cell Factor , Animals , Autophagy , Cell Hypoxia , Cells, Cultured , Cytokines/metabolism , Dendritic Cells , Hypoxia/metabolism , Mice , Mice, Inbred C57BL , Oxygen/metabolism , Stem Cell Factor/metabolism
5.
Front Immunol ; 12: 755304, 2021.
Article in English | MEDLINE | ID: mdl-34867987

ABSTRACT

Remarkable progress has been made in the field of anti-tumor immunity, nevertheless many questions are still open. Thus, even though memory T cells have been implicated in long-term anti-tumor protection, particularly in prevention of cancer recurrence, the bases of their variable effectiveness in tumor patients are poorly understood. Two types of memory T cells have been described according to their traffic pathways: recirculating and tissue-resident memory T cells. Recirculating tumor-specific memory T cells are found in the cell infiltrate of solid tumors, in the lymph and in the peripheral blood, and they constantly migrate in and out of lymph nodes, spleen, and bone marrow. Tissue-resident tumor-specific memory T cells (TRM) permanently reside in the tumor, providing local protection. Anti-PD-1/PD-L1, a type of immune checkpoint blockade (ICB) therapy, can considerably re-invigorate T cell response and lead to successful tumor control, even in patients at advanced stages. Indeed, ICB has led to unprecedented successes against many types of cancers, starting a ground-breaking revolution in tumor therapy. Unfortunately, not all patients are responsive to such treatment, thus further improvements are urgently needed. The mechanisms underlying resistance to ICB are still largely unknown. A better knowledge of the dynamics of the immune response driven by the two types of memory T cells before and after anti-PD-1/PD-L1 would provide important insights on the variability of the outcomes. This would be instrumental to design new treatments to overcome resistance. Here we provide an overview of T cell contribution to immunity against solid tumors, focusing on memory T cells. We summarize recent evidence on the involvement of recirculating memory T cells and TRM in anti-PD-1/PD-L1-elicited antitumor immunity, outline the open questions in the field, and propose that a synergic action of the two types of memory T cells is required to achieve a full response. We argue that a T-centric vision focused on the specific roles and the possible interplay between TRM and recirculating memory T cells will lead to a better understanding of anti-PD-1/PD-L1 mechanism of action, and provide new tools for improving ICB therapeutic strategy.


Subject(s)
Immune Checkpoint Inhibitors/immunology , Immunologic Memory/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Animals , Humans , Neoplasms/drug therapy
6.
Cytometry A ; 99(12): 1171-1175, 2021 12.
Article in English | MEDLINE | ID: mdl-34668313

ABSTRACT

A multicolor flow cytometry panel was designed and optimized to define the following nine mouse T cell subsets: Treg (CD3+ CD4+ CD8- FoxP3+ ), CD4+ T naïve (CD3+ CD4+ CD8- FoxP3- CD44int/low CD62L+ ), CD4+ T central memory (CD3+ CD4+ CD8- FoxP3- CD44high CD62L+ ), CD4+ T effector memory (CD3+ CD4+ CD8- FoxP3- CD44high CD62L- ), CD4+ T EMRA (CD3+ CD4+ CD8- FoxP3- CD44int/low CD62L- ), CD8+ T naïve (CD3+ CD8+ CD4- CD44int/low CD62L+ ), CD8+ T central memory (CD3+ CD8+ CD4- CD44high CD62L+ ), CD8+ T effector memory (CD3+ CD8+ CD4- CD44high CD62L- ), and CD8+ T EMRA (CD3+ CD8+ CD4- CD44int/low CD62L- ). In each T cell subset, a dual staining for Ki-67 expression and DNA content was employed to distinguish the following cell cycle phases: G0 (Ki67- , with 2n DNA), G1 (Ki67+ , with 2n DNA), and S-G2 /M (Ki67+ , with 2n < DNA ≤ 4n). This panel was established for the analysis of mouse (C57BL/6J) spleen.


Subject(s)
Spleen , T-Lymphocytes, Regulatory , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Cycle , Immunologic Memory , L-Selectin , Memory T Cells , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets
7.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925355

ABSTRACT

Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/pathology , Genetic Predisposition to Disease/genetics , Hepatitis, Autoimmune/immunology , Humans , Immunogenetics/methods , Liver/pathology , Models, Theoretical , Phenotype , Risk Factors
8.
J Vis Exp ; (167)2021 01 05.
Article in English | MEDLINE | ID: mdl-33491676

ABSTRACT

The cell cycle of antigen-specific T cells in vivo has been examined by using a few methods, all of which possess some limitations. Bromodeoxyuridine (BrdU) marks cells that are in or recently completed S-phase, and carboxyfluorescein succinimidyl ester (CFSE) detects daughter cells after division. However, these dyes do not allow identification of the cell cycle phase at the time of analysis. An alternative approach is to exploit Ki67, a marker that is highly expressed by cells in all phases of the cell cycle except the quiescent phase G0. Unfortunately, Ki67 does not allow further differentiation as it does not separate cells in S-phase that are committed to mitosis from those in G1 that can remain in this phase, proceed into cycling, or move into G0. Here, we describe a flow cytometric method for capturing a "snapshot" of T cells in different cell cycle phases in mouse secondary lymphoid organs. The method combines Ki67 and DNA staining with major histocompatibility complex (MHC)-peptide-multimer staining and an innovative gating strategy, allowing us to successfully differentiate between antigen-specific CD8 T cells in G0, in G1 and in S-G2/M phases of the cell cycle in the spleen and draining lymph nodes of mice after vaccination with viral vectors carrying the model antigen gag of human immunodeficiency virus (HIV)-1. Critical steps of the method were the choice of the DNA dye and the gating strategy to increase the assay sensitivity and to include highly activated/proliferating antigen-specific T cells that would have been missed by current criteria of analysis. The DNA dye, Hoechst 33342, enabled us to obtain a high-quality discrimination of the G0/G1 and G2/M DNA peaks, while preserving membrane and intracellular staining. The method has great potential to increase knowledge about T cell response in vivo and to improve immuno-monitoring analysis.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Cycle , DNA/metabolism , Epitopes/immunology , Flow Cytometry/methods , Ki-67 Antigen/metabolism , Vaccination , Animals , Bone Marrow Cells/cytology , Data Analysis , Female , Humans , Lymph Nodes/cytology , Mice, Inbred BALB C , Spleen/cytology , Staining and Labeling
9.
Front Immunol ; 11: 584626, 2020.
Article in English | MEDLINE | ID: mdl-33324403

ABSTRACT

Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one of the most studied immune checkpoints, several aspects of its biology remain to be clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative feedback of lymphocyte activation, contributing to the restoration of the steady state condition after acute immune responses. This loop might become detrimental in the presence of either a chronic infection or a growing tumor. PD-L1 expression in tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless, our knowledge about the regulation of PD-L1 expression is limited. The present review discusses how NF-κB, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer. NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 post-transcriptionally through indirect pathways. These processes, which under conditions of cellular stress and acute inflammation drive tissue homeostasis and promote tissue healing, are largely dysregulated in tumors. Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers induces both PD-L1 expression and epithelial-mesenchymal transition, suggesting that PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor infiltrating myeloid cells can contribute to the immune suppressive features of the tumor environment. A better understanding of the interplay between NF-κB signaling and PD-L1 expression is highly relevant to cancer biology and therapy.


Subject(s)
B7-H1 Antigen/immunology , NF-kappa B/immunology , Neoplasms/immunology , Epithelial-Mesenchymal Transition/immunology , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunity/immunology , Inflammation/immunology , Signal Transduction/immunology
10.
Front Immunol ; 11: 1401, 2020.
Article in English | MEDLINE | ID: mdl-32742268

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2020.00682.].

11.
Front Immunol ; 11: 682, 2020.
Article in English | MEDLINE | ID: mdl-32431695

ABSTRACT

"Location, location, and location": according to this mantra, the place where living beings settle has a key impact on the success of their activities; in turn, the living beings can, in many ways, modify their environment. This idea has now become more and more true for T cells. The ability of T cells to recirculate throughout blood or lymph, or to stably reside in certain tissues, turned out to determine immunity to pathogens, and tumors. If location matters also for human beings, the inspiring environment of Capri Island has contributed to the success of the EFIS-EJI Ruggero Ceppellini Advanced School of Immunology focused on "T cell memory," held in Anacapri from October 12, 2018 to October 15, 2018. In this minireview, we would like to highlight some novel concepts about T cell migration and residency and discuss their implications in relation to recent advances in the field, including the mechanisms regulating compartmentalization and cell cycle entry of T cells during activation, the role of mitochondrial metabolism in T cell movement, and the residency of regulatory T cells.


Subject(s)
Cell Movement/immunology , Immunologic Memory , T-Lymphocytes, Regulatory/immunology , Animals , Cell Compartmentation/immunology , Cell Cycle/immunology , Humans , Immunity , Lymphocyte Activation , Mitochondria/metabolism
13.
Eur J Immunol ; 49(4): 534-545, 2019 04.
Article in English | MEDLINE | ID: mdl-30758056

ABSTRACT

Dendritic cells (DCs) are key players in immunity and tolerance. Some DCs express c-kit, the receptor for stem cell factor (SCF), nevertheless c-kit functional role and the regulation of its expression in DCs are incompletely defined. We recently demonstrated that autocrine SCF sustains a pro-survival circuit, and that SCF increases phospho-AKT in c-kit+ mouse bone marrow-derived DCs (BMdDCs). Herein we observed that CpG and PolyI:C, two stimuli mimicking bacterial and viral nucleic acids respectively, strongly inhibited c-kit expression by BMdDCs and spleen DCs in vitro and in vivo. Experiments in IFNARI-/- mice showed that IFN-I pathway was required for c-kit down-regulation in cDC1s, but only partially supported it in cDC2s. Furthermore, CpG and PolyI:C strongly inhibited c-kit mRNA expression. In agreement with the reduced c-kit levels, SCF pro-survival activity was impaired. Thus in the presence of exogenously provided SCF, either PolyI:C or CpG induced spleen DC death in 2 days, while at earlier times IL-6 and IL-12 production were slightly increased. In contrast, SCF improved survival of unstimulated spleen DCs expressing high c-kit levels. Our studies suggest that c-kit down-modulation is a previously neglected component of DC response to CpG and PolyI:C, regulating DC survival and ultimately tuning immune response.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression , Proto-Oncogene Proteins c-kit/genetics , Animals , CD40 Antigens/metabolism , Cells, Cultured , Cytokines/biosynthesis , Immunophenotyping , Interleukin-6/biosynthesis , Mice , Oligodeoxyribonucleotides/immunology , Poly I-C/immunology , Proto-Oncogene Proteins c-kit/metabolism , Spleen
14.
Scand J Immunol ; 89(2): e12735, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30488973

ABSTRACT

Although clonal expansion is a hallmark of adaptive immunity, the location(s) where antigen-responding T cells enter cell cycle and complete it have been poorly explored. This lack of knowledge stems partially from the limited experimental approaches available. By using Ki67 plus DNA staining and a novel strategy for flow cytometry analysis, we distinguished antigen-specific CD8 T cells in G0 , in G1 and in S-G2 /M phases of cell cycle after intramuscular vaccination of BALB/c mice with antigen-expressing viral vectors. Antigen-specific cells in S-G2 /M were present at early times after vaccination in lymph nodes (LNs), spleen and, surprisingly, also in the blood, which is an unexpected site for cycling of normal non-leukaemic cells. Most proliferating cells had high scatter profile and were undetected by current criteria of analysis, which under-estimated up to 6 times antigen-specific cell frequency in LNs. Our discovery of cycling antigen-specific CD8 T cells in the blood opens promising translational perspectives.


Subject(s)
Blood Circulation , CD8-Positive T-Lymphocytes/immunology , Cell Cycle/immunology , Flow Cytometry/methods , Adaptive Immunity , Animals , Antigens/immunology , Cell Proliferation , Cell Survival , DNA/metabolism , Female , Genetic Vectors/genetics , HEK293 Cells , Humans , Ki-67 Antigen/metabolism , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Vaccination , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...