Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
Am Heart J ; 273: 72-82, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621575

ABSTRACT

BACKGROUND: The reduction in cardiovascular disease (CVD) events with edetate disodium (EDTA) in the Trial to Assess Chelation Therapy (TACT) suggested that chelation of toxic metals might provide novel opportunities to reduce CVD in patients with diabetes. Lead and cadmium are vasculotoxic metals chelated by EDTA. We present baseline characteristics for participants in TACT2, a randomized, double-masked, placebo-controlled trial designed as a replication of the TACT trial limited to patients with diabetes. METHODS: TACT2 enrolled 1,000 participants with diabetes and prior myocardial infarction, age 50 years or older between September 2016 and December 2020. Among 959 participants with at least one infusion, 933 had blood and/or urine metals measured at the Centers for Diseases Control and Prevention using the same methodology as in the National Health and Nutrition Examination Survey (NHANES). We compared metal levels in TACT2 to a contemporaneous subset of NHANES participants with CVD, diabetes and other inclusion criteria similar to TACT2's participants. RESULTS: At baseline, the median (interquartile range, IQR) age was 67 (60, 72) years, 27% were women, 78% reported white race, mean (SD) BMI was 32.7 (6.6) kg/m2, 4% reported type 1 diabetes, 46.8% were treated with insulin, 22.3% with GLP1-receptor agonists or SGLT-2 inhibitors, 90.2% with aspirin, warfarin or P2Y12 inhibitors, and 86.5% with statins. Blood lead was detectable in all participants; median (IQR) was 9.19 (6.30, 13.9) µg/L. Blood and urine cadmium were detectable in 97% and median (IQR) levels were 0.28 (0.18, 0.43) µg/L and 0.30 (0.18, 0.51) µg/g creatinine, respectively. Metal levels were largely similar to those in the contemporaneous NHANES subset. CONCLUSIONS: TACT2 participants were characterized by high use of medication to treat CVD and diabetes and similar baseline metal levels as in the general US population. TACT2 will determine whether chelation therapy reduces the occurrence of subsequent CVD events in this high-risk population. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov. Identifier: NCT02733185. https://clinicaltrials.gov/study/NCT02733185.

2.
Diabetes Care ; 47(3): 460-466, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38394636

ABSTRACT

OBJECTIVE: To examine the accuracy of different periods of continuous glucose monitoring (CGM), hemoglobin A1c (HbA1c), and their combination for estimating mean glycemia over 90 days (AG90). RESEARCH DESIGN AND METHODS: We retrospectively studied 985 CGM periods of 90 days with <10% missing data from 315 adults (86% of whom had type 1 diabetes) with paired HbA1c measurements. The impact of mean red blood cell age as a proxy for nonglycemic effects on HbA1c was estimated using published theoretical models and in comparison with empirical data. Given the lack of a gold standard measurement for AG90, we applied correction methods to generate a reference (eAG90) that we used to assess accuracy for HbA1c and CGM. RESULTS: Using 14 days of CGM at the end of the 90-day period resulted in a mean absolute error (95th percentile) of 14 (34) mg/dL when compared with eAG90. Nonglycemic effects on HbA1c led to a mean absolute error for average glucose calculated from HbA1c of 12 (29) mg/dL. Combining 14 days of CGM with HbA1c reduced the error to 10 (26) mg/dL. Mismatches between CGM and HbA1c >40 mg/dL occurred more than 5% of the time. CONCLUSIONS: The accuracy of estimates of eAG90 from limited periods of CGM can be improved by averaging with an HbA1c-based estimate or extending the monitoring period beyond ∼26 days. Large mismatches between eAG90 estimated from CGM and HbA1c are not unusual and may persist due to stable nonglycemic factors.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Adult , Humans , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring/methods , Retrospective Studies
3.
Clin Chem ; 69(8): 777-784, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37562009

ABSTRACT

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. An expert committee compiled evidence-based recommendations for laboratory analysis in patients with diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments in the full version of the guideline). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the patients measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring; genetic testing; and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Subject(s)
Blood Glucose , Diabetes Mellitus , Humans , United States , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Insulin
4.
J Diabetes Complications ; 37(9): 108556, 2023 09.
Article in English | MEDLINE | ID: mdl-37607422

ABSTRACT

AIMS: We analyzed the incidence of kidney disease in the Diabetes Prevention Program Outcomes Study (DPPOS) by originally randomized treatment group assignment: Intensive Lifestyle (ILS), Metformin (MET) or Placebo (PLB). METHODS: The current analyses used a time-to-event approach in which the primary outcome was kidney disease, ascertained as urine albumin-to-creatinine ratio (ACR) ≥ 3.39 mg/mmol (30 mg/g) or eGFR <45 mL/min/1.73m2, with confirmation required at the next visit, or adjudicated end-stage kidney disease (ESKD). RESULTS: At a median of 21 years following randomization in DPP, diabetes development was reduced in both the ILS (HR 0.73 [95%CI = 0.62, 0.85]) and MET groups (HR 0.85 [0.73, 0.99]) compared to the PLB group. Although risk for developing the primary kidney disease outcome was higher among those with incident diabetes compared to those without (HR 1.81 [1.43, 2.30]), it did not differ by intervention groups (ILS vs. PLB 1.02 (0.81, 1.29); MET vs. PLB 1.08 (0.86, 1.35). There was a non-significant metformin by age interaction (p = 0.057), with metformin being beneficial for kidney disease in the younger but potentially harmful in the older participants. CONCLUSIONS: Development of kidney disease was increased in participants who developed diabetes but did not differ by original treatment group assignment. CLINICAL TRIAL REGISTRATIONS: Diabetes Prevention Program (DPP) Clinical trial reg. no. NCT00004992 DPP Outcomes Study (DPPOS) Clinical trial reg. no. NCT0038727.


Subject(s)
Diabetes Mellitus, Type 2 , Kidney Diseases , Metformin , Adult , Humans , Incidence , Life Style , Metformin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology
5.
Diabetes Care ; 46(10): 1740-1746, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37471272

ABSTRACT

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. An expert committee compiled evidence-based recommendations for laboratory analysis in patients with diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments in the full version of the guideline). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the patients measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring; genetic testing; and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Subject(s)
Blood Glucose , Diabetes Mellitus , Humans , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Insulin
6.
Diabetes Care ; 46(10): e151-e199, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37471273

ABSTRACT

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH: An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus , Humans , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Insulin , Diabetes Mellitus, Type 1/diagnosis
7.
Clin Chem ; 69(8): 808-868, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37473453

ABSTRACT

BACKGROUND: Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH: An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT: Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus , Humans , Glycated Hemoglobin , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Insulin
8.
JAMA Netw Open ; 6(5): e2312147, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37145592

ABSTRACT

Importance: Treatment challenges exist for younger adults with type 1 (T1D) and type 2 diabetes (T2D). Health care coverage, access to, and use of diabetes care are not well delineated in these high-risk populations. Objective: To compare patterns of health care coverage, access to, and use of diabetes care and determine their associations with glycemia among younger adults with T1D and with T2D. Design, Setting, and Participants: This cohort study analyzed data from a survey that was jointly developed by 2 large, national cohort studies: the SEARCH for Diabetes in Youth (SEARCH) study, an observational study of individuals with youth-onset T1D or T2D, and the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study, a randomized clinical trial (2004-2011) followed by an observational study (2012-2020). The interviewer-directed survey was administered during in-person study visits in both studies between 2017 and 2019. Data analyses were performed between May 2021 and October 2022. Main Outcomes and Measures: Survey questions addressed health care coverage, usual sources of diabetes care, and frequency of care use. Glycated hemoglobin (HbA1c) levels were assayed in a central laboratory. Patterns of health care factors and HbA1c levels were compared by diabetes type. Results: The analysis included 1371 participants (mean [range] age, 25 [18-36] years; 824 females [60.1%]), of whom 661 had T1D and 250 had T2D from the SEARCH study and 460 had T2D from the TODAY study. Participants had a mean (SD) diabetes duration of 11.8 (2.8) years. More participants with T1D than T2D in both the SEARCH and TODAY studies reported health care coverage (94.7%, 81.6%, and 86.7%), access to diabetes care (94.7%, 78.1%, and 73.4%), and use of diabetes care (88.1%, 80.5%, and 73.6%). Not having health care coverage was associated with significantly higher mean (SE) HbA1c levels in participants with T1D in the SEARCH study (no coverage, 10.8% [0.5%]; public, 9.4% [0.2%]; private, 8.7% [0.1%]; P < .001) and participants with T2D from the TODAY study (no coverage, 9.9% [0.3%]; public, 8.7% [0.2%]; private, 8.7% [0.2%]; P = .004). Medicaid expansion vs without expansion was associated with more health care coverage (participants with T1D: 95.8% vs 90.2%; participants with T2D in SEARCH: 86.1% vs 73.9%; participants with T2D in TODAY: 93.6% vs 74.2%) and lower HbA1c levels (participants with T1D: 9.2% vs 9.7%; participants with T2D in SEARCH: 8.4% vs 9.3%; participants with T2D in TODAY: 8.7% vs 9.3%). The T1D group incurred higher median (IQR) monthly out-of-pocket expenses than the T2D group ($74.50 [$10.00-$309.00] vs $10.00 [$0-$74.50]). Conclusions and Relevance: Results of this study suggested that lack of health care coverage and of an established source of diabetes care were associated with significantly higher HbA1c levels for participants with T1D, but inconsistent results were found for participants with T2D. Increased access to diabetes care (eg, through Medicaid expansion) may be associated with improved health outcomes, but additional strategies are needed, particularly for individuals with T2D.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Female , Adolescent , United States/epidemiology , Adult , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/therapy , Glycated Hemoglobin , Cohort Studies , Outcome Assessment, Health Care
10.
Diabetes Care ; 45(12): 2943-2949, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36321737

ABSTRACT

OBJECTIVE: Kidney disease screening recommendations include annual urine testing for albuminuria after 5 years' duration of type 1 diabetes. We aimed to determine a simple, risk factor-based screening schedule that optimizes early detection and testing frequency. RESEARCH DESIGN AND METHODS: Urinary albumin excretion measurements from 1,343 participants in the Diabetes Control and Complications Trial and its long-term follow-up were used to create piecewise-exponential incidence models assuming 6-month constant hazards. Likelihood of the onset of moderately or severely elevated albuminuria (confirmed albumin excretion rate AER ≥30 or ≥300 mg/24 h, respectively) and its risk factors were used to identify individualized screening schedules. Time with undetected albuminuria and number of tests were compared with annual screening. RESULTS: The 3-year cumulative incidence of elevated albuminuria following normoalbuminuria at any time during the study was 3.2%, which was strongly associated with higher glycated hemoglobin (HbA1c) and AER. Personalized screening in 2 years for those with current AER ≤10 mg/24 h and HbA1c ≤8% (low risk [0.6% three-year cumulative incidence]), in 6 months for those with AER 21-30 mg/24 h or HbA1c ≥9% (high risk [8.9% three-year cumulative incidence]), and in 1 year for all others (average risk [2.4% three-year cumulative incidence]) was associated with 34.9% reduction in time with undetected albuminuria and 20.4% reduction in testing frequency as compared with annual screening. Stratification by categories of HbA1c or AER alone was associated with reductions of lesser magnitude. CONCLUSIONS: A personalized alternative to annual screening in type 1 diabetes can substantially reduce both the time with undetected kidney disease and the frequency of urine testing. ARTICLE HIGHLIGHTS: Kidney disease screening recommendations include annual urine testing for albuminuria after 5 years' duration of type 1 diabetes. We investigated simple screening schedules that optimize early detection and testing frequency. Personalized screening in 2 years for those with current AER ≤10 mg/24 h and HbA1c ≤8%, in 6 months for those with AER 21-30 mg/24 h or HbA1c ≥9%, and in 1 year for all others yielded 34.9% reduction in time with undetected albuminuria and 20.4% fewer evaluations compared with annual screening. A personalized alternative to annual screening in type 1 diabetes can substantially reduce both the time with undetected kidney disease and the frequency of urine testing.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Humans , Albumins , Albuminuria/complications , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Diabetic Nephropathies/epidemiology , Glycated Hemoglobin/analysis , Incidence
11.
JAMA Netw Open ; 5(9): e2230710, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36074461

ABSTRACT

Importance: The lower risk of cardiovascular disease (CVD) among women compared with men in the general population may be diminished among those with diabetes. Objective: To evaluate cardiometabolic risk factors and their management in association with CVD events in women vs men with type 1 diabetes enrolled in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Design, Setting, and Participants: This cohort study used data obtained during the combined DCCT (randomized clinical trial, conducted 1983-1993) and EDIC (observational study, conducted 1994 to present) studies through April 30, 2018 (mean [SD] follow-up, 28.8 [5.8] years), at 27 clinical centers in the US and Canada. Data analyses were performed between July 2021 and April 2022. Exposure: During the DCCT phase, patients were randomized to intensive vs conventional diabetes therapy. Main Outcomes and Measures: Cardiometabolic risk factors and CVD events were assessed via detailed medical history and focused physical examinations. Blood and urine samples were assayed centrally. CVD events were adjudicated by a review committee. Linear mixed models and Cox proportional hazards models evaluated sex differences in cardiometabolic risk factors and CVD risk over follow-up. Results: A total of 1441 participants with type 1 diabetes (mean [SD] age at DCCT baseline, 26.8 [7.1] years; 761 [52.8%] men; 1390 [96.5%] non-Hispanic White) were included. Over the duration of the study, compared with men, women had significantly lower body mass index (BMI, calculated as weight in kilograms divided by height in meters squared; ß = -0.43 [SE, 0.16]; P = .006), waist circumference (ß = -10.56 cm [SE, 0.52 cm]; P < .001), blood pressure (systolic: ß = -5.77 mm Hg [SE, 0.35 mm Hg]; P < .001; diastolic: ß = -3.23 mm Hg [SE, 0.26 mm Hg]; P < .001), and triglyceride levels (ß = -10.10 mg/dL [SE, 1.98 mg/dL]; P < .001); higher HDL cholesterol levels (ß = 9.36 mg/dL [SE, 0.57 mg/dL]; P < .001); and similar LDL cholesterol levels (ß = -0.76 mg/dL [SE, 1.22 mg/dL]; P = .53). Women, compared with men, achieved recommended targets more frequently for blood pressure (ie, <130/80 mm Hg: 90.0% vs 77.4%; P < .001) and triglycerides (ie, <150 mg/dL: 97.3% vs 90.5%; P < .001). However, sex-specific HDL cholesterol targets (ie, ≥50 mg/dL for women, ≥40 mg/dL for men) were achieved less often (74.3% vs 86.6%; P < .001) and cardioprotective medications were used less frequently in women than men (ie, angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker: 29.6% [95% CI, 25.7%-33.9%] vs 40.0% [95% CI, 36.1%-44.0%]; P = .001; lipid-lowering medication: 25.3% [95% CI, 22.1%-28.7%] vs 39.6% [95% CI, 36.1%-43.2%]; P < .001). Women also had significantly higher pulse rates (mean [SD], 75.2 [6.8] beats per minute vs 71.8 [6.9] beats per minute; P < .001) and hemoglobin A1c levels (mean [SD], 8.3% [1.0%] vs 8.1% [1.0%]; P = .01) and achieved targets for tighter glycemic control less often than men (ie, hemoglobin A1c <7%: 11.2% [95% CI, 9.3%-13.3%] vs 14.0% [95% CI, 12.0%-16.3%]; P = .03). Conclusions and Relevance: These findings suggest that despite a more favorable cardiometabolic risk factor profile, women with type 1 diabetes did not have a significantly lower CVD event burden than men, suggesting a greater clinical impact of cardiometabolic risk factors in women vs men with diabetes. These findings call for conscientious optimization of the control of CVD risk factors in women with type 1 diabetes.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Adult , Cardiometabolic Risk Factors , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cholesterol, HDL , Cohort Studies , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Female , Glycated Hemoglobin/analysis , Humans , Male , Risk Factors , Young Adult
12.
N Engl J Med ; 387(12): 1075-1088, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36129997

ABSTRACT

BACKGROUND: Data are lacking on the comparative effectiveness of commonly used glucose-lowering medications, when added to metformin, with respect to microvascular and cardiovascular disease outcomes in persons with type 2 diabetes. METHODS: We assessed the comparative effectiveness of four commonly used glucose-lowering medications, added to metformin, in achieving and maintaining a glycated hemoglobin level of less than 7.0% in participants with type 2 diabetes. The randomly assigned therapies were insulin glargine U-100 (hereafter, glargine), glimepiride, liraglutide, and sitagliptin. Prespecified secondary outcomes with respect to microvascular and cardiovascular disease included hypertension and dyslipidemia, confirmed moderately or severely increased albuminuria or an estimated glomerular filtration rate of less than 60 ml per minute per 1.73 m2 of body-surface area, diabetic peripheral neuropathy assessed with the Michigan Neuropathy Screening Instrument, cardiovascular events (major adverse cardiovascular events [MACE], hospitalization for heart failure, or an aggregate outcome of any cardiovascular event), and death. Hazard ratios are presented with 95% confidence limits that are not adjusted for multiple comparisons. RESULTS: During a mean 5.0 years of follow-up in 5047 participants, there were no material differences among the interventions with respect to the development of hypertension or dyslipidemia or with respect to microvascular outcomes; the mean overall rate (i.e., events per 100 participant-years) of moderately increased albuminuria levels was 2.6, of severely increased albuminuria levels 1.1, of renal impairment 2.9, and of diabetic peripheral neuropathy 16.7. The treatment groups did not differ with respect to MACE (overall rate, 1.0), hospitalization for heart failure (0.4), death from cardiovascular causes (0.3), or all deaths (0.6). There were small differences with respect to rates of any cardiovascular disease, with 1.9, 1.9, 1.4, and 2.0 in the glargine, glimepiride, liraglutide, and sitagliptin groups, respectively. When one treatment was compared with the combined results of the other three treatments, the hazard ratios for any cardiovascular disease were 1.1 (95% confidence interval [CI], 0.9 to 1.3) in the glargine group, 1.1 (95% CI, 0.9 to 1.4) in the glimepiride group, 0.7 (95% CI, 0.6 to 0.9) in the liraglutide group, and 1.2 (95% CI, 1.0 to 1.5) in the sitagliptin group. CONCLUSIONS: In participants with type 2 diabetes, the incidences of microvascular complications and death were not materially different among the four treatment groups. The findings indicated possible differences among the groups in the incidence of any cardiovascular disease. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; GRADE ClinicalTrials.gov number, NCT01794143.).


Subject(s)
Cardiovascular Diseases , Diabetes Complications , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Hypoglycemic Agents , Metformin , Albuminuria/etiology , Albuminuria/prevention & control , Blood Glucose/analysis , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Comparative Effectiveness Research , Diabetes Complications/etiology , Diabetes Complications/prevention & control , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/etiology , Diabetic Neuropathies/prevention & control , Drug Therapy, Combination , Dyslipidemias/etiology , Dyslipidemias/prevention & control , Glomerular Filtration Rate , Glycated Hemoglobin/analysis , Heart Failure/etiology , Heart Failure/prevention & control , Humans , Hypertension/etiology , Hypertension/prevention & control , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Insulin Glargine/adverse effects , Insulin Glargine/therapeutic use , Liraglutide/adverse effects , Liraglutide/therapeutic use , Metformin/adverse effects , Metformin/therapeutic use , Microvessels/drug effects , Sitagliptin Phosphate/adverse effects , Sitagliptin Phosphate/therapeutic use , Sulfonylurea Compounds/adverse effects , Sulfonylurea Compounds/therapeutic use
13.
N Engl J Med ; 387(12): 1063-1074, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36129996

ABSTRACT

BACKGROUND: The comparative effectiveness of glucose-lowering medications for use with metformin to maintain target glycated hemoglobin levels in persons with type 2 diabetes is uncertain. METHODS: In this trial involving participants with type 2 diabetes of less than 10 years' duration who were receiving metformin and had glycated hemoglobin levels of 6.8 to 8.5%, we compared the effectiveness of four commonly used glucose-lowering medications. We randomly assigned participants to receive insulin glargine U-100 (hereafter, glargine), the sulfonylurea glimepiride, the glucagon-like peptide-1 receptor agonist liraglutide, or sitagliptin, a dipeptidyl peptidase 4 inhibitor. The primary metabolic outcome was a glycated hemoglobin level, measured quarterly, of 7.0% or higher that was subsequently confirmed, and the secondary metabolic outcome was a confirmed glycated hemoglobin level greater than 7.5%. RESULTS: A total of 5047 participants (19.8% Black and 18.6% Hispanic or Latinx) who had received metformin for type 2 diabetes were followed for a mean of 5.0 years. The cumulative incidence of a glycated hemoglobin level of 7.0% or higher (the primary metabolic outcome) differed significantly among the four groups (P<0.001 for a global test of differences across groups); the rates with glargine (26.5 per 100 participant-years) and liraglutide (26.1) were similar and lower than those with glimepiride (30.4) and sitagliptin (38.1). The differences among the groups with respect to a glycated hemoglobin level greater than 7.5% (the secondary outcome) paralleled those of the primary outcome. There were no material differences with respect to the primary outcome across prespecified subgroups defined according to sex, age, or race or ethnic group; however, among participants with higher baseline glycated hemoglobin levels there appeared to be an even greater benefit with glargine, liraglutide, and glimepiride than with sitagliptin. Severe hypoglycemia was rare but significantly more frequent with glimepiride (in 2.2% of the participants) than with glargine (1.3%), liraglutide (1.0%), or sitagliptin (0.7%). Participants who received liraglutide reported more frequent gastrointestinal side effects and lost more weight than those in the other treatment groups. CONCLUSIONS: All four medications, when added to metformin, decreased glycated hemoglobin levels. However, glargine and liraglutide were significantly, albeit modestly, more effective in achieving and maintaining target glycated hemoglobin levels. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; GRADE ClinicalTrials.gov number, NCT01794143.).


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Hypoglycemic Agents , Blood Glucose/analysis , Comparative Effectiveness Research , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Therapy, Combination , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/therapeutic use , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Insulin Glargine/adverse effects , Insulin Glargine/therapeutic use , Liraglutide/adverse effects , Liraglutide/therapeutic use , Metformin/adverse effects , Metformin/therapeutic use , Sitagliptin Phosphate/adverse effects , Sitagliptin Phosphate/therapeutic use , Sulfonylurea Compounds/adverse effects , Sulfonylurea Compounds/therapeutic use , Treatment Outcome
14.
Diabetes Care ; 45(11): 2653-2661, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36098658

ABSTRACT

OBJECTIVE: To determine glycemic and nonglycemic risk factors that contribute to the presence of diabetic retinopathy (DR) before and after the onset of type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: During the Diabetes Prevention Program (DPP) and DPP Outcome Study (DPPOS), we performed fundus photography over time in adults at high risk for developing T2D, including after they developed diabetes. Fundus photographs were graded using the Early Treatment Diabetic Retinopathy Study (ETDRS) grading system, with DR defined as typical lesions of DR (microaneurysms, exudates, hemorrhage, or worse) in either eye. RESULTS: By DPPOS year 16 (∼20 years after random assignment into DPP), 24% of 1,614 participants who had developed T2D and 14% of 885 who remained without diabetes had DR. In univariate analyses, using results from across the entire duration of follow-up, American Indian race was associated with less frequent DR compared with non-Hispanic White (NHW) race, and higher HbA1c, fasting and 2-h plasma glucose levels during an oral glucose tolerance test, weight, and history of hypertension, dyslipidemia, and smoking, but not treatment group assignment, were associated with more frequent DR. On multivariate analysis, American Indian race was associated with less DR compared with NHW (odds ratio [OR] 0.36, 95% CI 0.20-0.66), and average HbA1c was associated with more DR (OR 1.92, 95% CI 1.46-1.74 per SD [0.7%] increase in HbA1c). CONCLUSIONS: DR may occur in adults with prediabetes and early in the course of T2D. HbA1c was an important risk factor for the development of DR across the entire glycemic range from prediabetes to T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Prediabetic State , Adult , Humans , Diabetes Mellitus, Type 2/complications , Glycated Hemoglobin/analysis , Blood Glucose/analysis , Risk Factors
15.
Diabetes Care ; 45(10): 2445-2448, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35972222

ABSTRACT

OBJECTIVE: Estimated time in range (eTIR) obtained from DCCT glucose profiles (pre- and postprandial and bedtime) was recently reported to be associated with microvascular outcomes and was recommended as a clinical trial outcome, but without consideration of HbA1c. RESEARCH DESIGN AND METHODS: The associations of eTIR with diabetic retinopathy and microalbuminuria were assessed without and with adjustment for HbA1c and baseline covariates. RESULTS: Adjusted for HbA1c and covariates, eTIR was marginally significantly associated with retinopathy in the full cohort (hazard ratio [HR] 1.12 per 10% lower eTIR [95% CI 1.0, 1.26], P = 0.042). Conversely, HbA1c was significantly associated with both outcomes (HR ≥1.19 per 0.5% higher HbA1c, P ≤ 0.0002) in five of six adjusted analyses. CONCLUSIONS: The association of eTIR with complications is largely explained by its correlation with HbA1c. HbA1c, not eTIR or continuous glucose monitoring TIR, remains the preferred outcome in clinical studies of type 1 diabetes complications.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/complications , Diabetic Retinopathy/complications , Glycated Hemoglobin/analysis , Humans
16.
Circulation ; 145(22): 1632-1641, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35603600

ABSTRACT

BACKGROUND: Lifestyle intervention and metformin have been shown to prevent diabetes; however, their efficacy in preventing cardiovascular disease associated with the development of diabetes is unclear. We examined whether these interventions reduced the incidence of major cardiovascular events over a 21-year median follow-up of participants in the DPP trial (Diabetes Prevention Program) and DPPOS (Diabetes Prevention Program Outcomes Study). METHODS: During DPP, 3234 participants with impaired glucose tolerance were randomly assigned to metformin 850 mg twice daily, intensive lifestyle or placebo, and followed for 3 years. During the next 18-year average follow-up in DPPOS, all participants were offered a less intensive group lifestyle intervention, and unmasked metformin was continued in the metformin group. The primary outcome was the first occurrence of nonfatal myocardial infarction, stroke, or cardiovascular death adjudicated by standard criteria. An extended cardiovascular outcome included the primary outcome or hospitalization for heart failure or unstable angina, coronary or peripheral revascularization, coronary heart disease diagnosed by angiography, or silent myocardial infarction by ECG. ECGs and cardiovascular risk factors were measured annually. RESULTS: Neither metformin nor lifestyle intervention reduced the primary outcome: metformin versus placebo hazard ratio 1.03 (95% CI, 0.78-1.37; P = 0.81) and lifestyle versus placebo hazard ratio 1.14 (95% CI, 0.87-1.50; P = 0.34). Risk factor adjustment did not change these results. No effect of either intervention was seen on the extended cardiovascular outcome. CONCLUSIONS: Neither metformin nor lifestyle reduced major cardiovascular events in DPPOS over 21 years despite long-term prevention of diabetes. Provision of group lifestyle intervention to all, extensive out-of-study use of statin and antihypertensive agents, and reduction in the use of study metformin together with out-of-study metformin use over time may have diluted the effects of the interventions. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifiers: DPP (NCT00004992) and DPPOS (NCT00038727).


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Myocardial Infarction , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Humans , Hypoglycemic Agents/therapeutic use , Life Style , Metformin/therapeutic use , Myocardial Infarction/drug therapy , Outcome Assessment, Health Care
17.
Am Heart J ; 252: 1-11, 2022 10.
Article in English | MEDLINE | ID: mdl-35598636

ABSTRACT

BACKGROUND: Intravenous edetate disodium-based infusions reduced cardiovascular events in a prior clinical trial. The Trial to Assess Chelation Therapy 2 (TACT2) will replicate the initial study design. METHODS: TACT2 is an NIH-sponsored, randomized, 2x2 factorial, double masked, placebo-controlled, multicenter clinical trial testing 40 weekly infusions of a multi-component edetate disodium (disodium ethylenediamine tetra-acetic acid, or Na2EDTA)-based chelation solution and twice daily oral, high-dose multivitamin and mineral supplements in patients with diabetes and a prior myocardial infarction (MI). TACT2 completed enrollment of 1000 subjects in December 2020, and infusions in December 2021. Subjects are followed for 2.5 to 5 years. The primary endpoint is time to first occurrence of all-cause mortality, MI, stroke, coronary revascularization, or hospitalization for unstable angina. The trial has >;85% power to detect a 30% relative reduction in the primary endpoint. TACT2 also includes a Trace Metals and Biorepository Core Lab, to test whether benefits of treatment, if present, are due to chelation of lead and cadmium from patients. Design features of TACT2 were chosen to replicate selected features of the first TACT, which demonstrated a significant reduction in cardiovascular outcomes in the EDTA chelation arm compared with placebo among patients with a prior MI, with the largest effect in patients with diabetes. RESULTS: Results are expected in 2024. CONCLUSION: TACT2 may provide definitive evidence of the benefit of edetate disodiumbased chelation on cardiovascular outcomes, as well as the clinical importance of longitudinal changes in toxic metal levels of participants.


Subject(s)
Diabetes Mellitus , Myocardial Infarction , Chelating Agents/therapeutic use , Chelation Therapy/methods , Diabetes Mellitus/drug therapy , Double-Blind Method , Edetic Acid/therapeutic use , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/epidemiology , Vitamins
18.
JAMA Netw Open ; 5(4): e229478, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35482306

ABSTRACT

Importance: Increased risk of neurological and psychiatric conditions after traumatic brain injury (TBI) is well-defined. However, cardiovascular and endocrine comorbidity risk after TBI in individuals without these comorbidities and associations with post-TBI mortality have received little attention. Objective: To assess the incidence of cardiovascular, endocrine, neurological, and psychiatric comorbidities in patients with mild TBI (mTBI) or moderate to severe TBI (msTBI) and analyze associations between post-TBI comorbidities and mortality. Design, Setting, and Participants: This prospective longitudinal cohort study used hospital-based patient registry data from a tertiary academic medical center to select patients without any prior clinical comorbidities who experienced TBI from 2000 to 2015. Using the same data registry, individuals without head injuries, the unexposed group, and without target comorbidities were selected and age-, sex-, and race-frequency-matched to TBI subgroups. Patients were followed-up for up to 10 years. Data were analyzed in 2021. Exposures: Mild or moderate to severe head trauma. Main Outcomes and Measures: Cardiovascular, endocrine, neurologic, and psychiatric conditions were defined based on International Classification of Diseases, Ninth Revision (ICD-9) or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10). Associations between TBI and comorbidities, as well as associations between the comorbidities and mortality, were analyzed. Results: A total of 4351 patients with mTBI (median [IQR] age, 45 [29-57] years), 4351 patients with msTBI (median [IQR] age, 47 [30-58] years), and 4351 unexposed individuals (median [IQR] age, 46 [30-58] years) were included in analyses. In each group, 45% of participants were women. mTBI and msTBI were significantly associated with higher risks of cardiovascular, endocrine, neurologic, and psychiatric disorders compared with unexposed individuals. In particular, hypertension risk was increased in both mTBI (HR, 2.5; 95% CI, 2.1-2.9) and msTBI (HR, 2.4; 95% CI, 2.0-2.9) groups. Diabetes risk was increased in both mTBI (HR, 1.9; 95% CI, 1.4-2.7) and msTBI (HR, 1.9; 95% CI, 1.4-2.6) groups, and risk of ischemic stroke or transient ischemic attack was also increased in mTBI (HR, 2.2; 95% CI, 1.4-3.3) and msTBI (HR, 3.6; 95% CI, 2.4-5.3) groups. All comorbidities in the TBI subgroups emerged within a median (IQR) of 3.49 (1.76-5.96) years after injury. Risks for post-TBI comorbidities were also higher in patients aged 18 to 40 years compared with age-matched unexposed individuals: hypertension risk was increased in the mTBI (HR, 5.9; 95% CI, 3.9-9.1) and msTBI (HR, 3.9; 95% CI, 2.5-6.1) groups, while hyperlipidemia (HR, 2.3; 95% CI, 1.5-3.4) and diabetes (HR, 4.6; 95% CI, 2.1-9.9) were increased in the mTBI group. Individuals with msTBI, compared with unexposed patients, had higher risk of mortality (432 deaths [9.9%] vs 250 deaths [5.7%]; P < .001); postinjury hypertension (HR, 1.3; 95% CI, 1.1-1.7), coronary artery disease (HR, 2.2; 95% CI, 1.6-3.0), and adrenal insufficiency (HR, 6.2; 95% CI, 2.8-13.0) were also associated with higher mortality. Conclusions and Relevance: These findings suggest that TBI of any severity was associated with a higher risk of chronic cardiovascular, endocrine, and neurological comorbidities in patients without baseline diagnoses. Medical comorbidities were observed in relatively young patients with TBI. Comorbidities occurring after TBI were associated with higher mortality. These findings suggest the need for a targeted screening program for multisystem diseases after TBI, particularly chronic cardiometabolic diseases.


Subject(s)
Brain Injuries, Traumatic , Hypertension , Mental Disorders , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/epidemiology , Chronic Disease , Female , Humans , Hypertension/complications , Longitudinal Studies , Male , Mental Disorders/etiology , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...