Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(3): 105715, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309503

ABSTRACT

NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.


Subject(s)
Endosomal Sorting Complexes Required for Transport , NAV1.5 Voltage-Gated Sodium Channel , Nedd4 Ubiquitin Protein Ligases , Ubiquitination , Endosomal Sorting Complexes Required for Transport/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Ubiquitin/metabolism , Humans , NAV1.5 Voltage-Gated Sodium Channel/metabolism , HEK293 Cells
2.
Dev Cell ; 57(22): 2550-2565.e5, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36413949

ABSTRACT

Acinar cells are the principal secretory units of multiple exocrine organs. A single-cell, layered, lumenized acinus forms from a large cohort of epithelial progenitors that must initiate and coordinate three cellular programs of acinar specification, namely, lineage progression, secretion, and polarization. Despite this well-known outcome, the mechanism(s) that regulate these complex programs are unknown. Here, we demonstrate that neuronal-epithelial cross-talk drives acinar specification through neuregulin (NRG1)-ERBB3-mTORC2 signaling. Using single-cell and global RNA sequencing of developing murine salivary glands, we identified NRG1-ERBB3 to precisely overlap with acinar specification during gland development. Genetic deletion of Erbb3 prevented cell lineage progression and the establishment of lumenized, secretory acini. Conversely, NRG1 treatment of isolated epithelia was sufficient to recapitulate the development of secretory acini. Mechanistically, we found that NRG1-ERBB3 regulates each developmental program through an mTORC2 signaling pathway. Thus, we reveal that a neuronal-epithelial (NRG1/ERBB3/mTORC2) mechanism orchestrates the creation of functional acini.


Subject(s)
Neuregulins , Signal Transduction , Humans , Mice , Animals , Mechanistic Target of Rapamycin Complex 2 , Acinar Cells , Biological Transport , Neuregulin-1 , Receptor, ErbB-3
3.
J Biol Chem ; 298(5): 101854, 2022 05.
Article in English | MEDLINE | ID: mdl-35331737

ABSTRACT

WWP2 is a HECT E3 ligase that targets protein Lys residues for ubiquitination and is comprised of an N-terminal C2 domain, four central WW domains, and a C-terminal catalytic HECT domain. The peptide segment between the middle WW domains, the 2,3-linker, is known to autoinhibit the catalytic domain, and this autoinhibition can be relieved by phosphorylation at Tyr369. Several protein substrates of WWP2 have been identified, including the tumor suppressor lipid phosphatase PTEN, but the full substrate landscape and biological functions of WWP2 remain to be elucidated. Here, we used protein microarray technology and the activated enzyme phosphomimetic mutant WWP2Y369E to identify potential WWP2 substrates. We identified 31 substrate hits for WWP2Y369E using protein microarrays, of which three were known autophagy receptors (NDP52, OPTN, and SQSTM1). These three hits were validated with in vitro and cell-based transfection assays and the Lys ubiquitination sites on these proteins were mapped by mass spectrometry. Among the mapped ubiquitin sites on these autophagy receptors, many had been previously identified in the endogenous proteins. Finally, we observed that WWP2 KO SH-SH5Y neuroblastoma cells using CRISPR-Cas9 showed a defect in mitophagy, which could be rescued by WWP2Y369E transfection. These studies suggest that WWP2-mediated ubiquitination of the autophagy receptors NDP52, OPTN, and SQSTM1 may positively contribute to the regulation of autophagy.


Subject(s)
Autophagy , Protein Array Analysis , Ubiquitin-Protein Ligases , Cell Cycle Proteins/metabolism , Humans , Membrane Transport Proteins/metabolism , Nuclear Proteins/metabolism , Proteins/metabolism , Sequestosome-1 Protein/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
J Biol Chem ; 298(4): 101763, 2022 04.
Article in English | MEDLINE | ID: mdl-35202650

ABSTRACT

Voltage-gated sodium channels, NaVs, are responsible for the rapid rise of action potentials in excitable tissues. NaV channel mutations have been implicated in several human genetic diseases, such as hypokalemic periodic paralysis, myotonia, and long-QT and Brugada syndromes. Here, we generated high-affinity anti-NaV nanobodies (Nbs), Nb17 and Nb82, that recognize the NaV1.4 (skeletal muscle) and NaV1.5 (cardiac muscle) channel isoforms. These Nbs were raised in llama (Lama glama) and selected from a phage display library for high affinity to the C-terminal (CT) region of NaV1.4. The Nbs were expressed in Escherichia coli, purified, and biophysically characterized. Development of high-affinity Nbs specifically targeting a given human NaV isoform has been challenging because they usually show undesired crossreactivity for different NaV isoforms. Our results show, however, that Nb17 and Nb82 recognize the CTNaV1.4 or CTNaV1.5 over other CTNav isoforms. Kinetic experiments by biolayer interferometry determined that Nb17 and Nb82 bind to the CTNaV1.4 and CTNaV1.5 with high affinity (KD ∼ 40-60 nM). In addition, as proof of concept, we show that Nb82 could detect NaV1.4 and NaV1.5 channels in mammalian cells and tissues by Western blot. Furthermore, human embryonic kidney cells expressing holo NaV1.5 channels demonstrated a robust FRET-binding efficiency for Nb17 and Nb82. Our work lays the foundation for developing Nbs as anti-NaV reagents to capture NaVs from cell lysates and as molecular visualization agents for NaVs.


Subject(s)
Single-Domain Antibodies , Voltage-Gated Sodium Channels , Animals , Cells, Cultured , Escherichia coli/genetics , Humans , Long QT Syndrome/metabolism , Mammals/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism
5.
ACS Chem Biol ; 17(1): 68-76, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34941261

ABSTRACT

Akt is a Ser/Thr protein kinase that regulates cell growth and metabolism and is considered a therapeutic target for cancer. Regulation of Akt by membrane recruitment and post-translational modifications (PTMs) has been extensively studied. The most well-established mechanism for cellular Akt activation involves phosphorylation on its activation loop on Thr308 by PDK1 and on its C-terminal tail on Ser473 by mTORC2. In addition, dual phosphorylation on Ser477 and Thr479 has been shown to activate Akt. Other C-terminal tail PTMs have been identified, but their functional impacts have not been well-characterized. Here, we investigate the regulatory effects of phosphorylation of Tyr474 and O-GlcNAcylation of Ser473 on Akt. We use expressed protein ligation as a tool to produce semisynthetic Akt proteins containing phosphoTyr474 and O-GlcNAcSer473 to dissect the enzymatic functions of these PTMs. We find that O-GlcNAcylation at Ser473 and phosphorylation at Tyr474 can also partially increase Akt's kinase activity toward both peptide and protein substrates. Additionally, we performed kinase assays employing human protein microarrays to investigate global substrate specificity of Akt, comparing phosphorylated versus O-GlcNAcylated Ser473 forms. We observed a high similarity in the protein substrates phosphorylated by phosphoSer473 Akt and O-GlcNAcSer473 Akt. Two Akt substrates identified using microarrays, PPM1H, a protein phosphatase, and NEDD4L, an E3 ubiquitin ligase, were validated in solution-phase assays and cell transfection experiments.


Subject(s)
Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Animals , HCT116 Cells , Humans , Insecta , Phosphorylation , Proto-Oncogene Proteins c-akt/chemical synthesis , Sf9 Cells
6.
J Biol Chem ; 296: 100832, 2021.
Article in English | MEDLINE | ID: mdl-34048713

ABSTRACT

Voltage-gated sodium channels (NaVs) underlie the initiation of action potentials in various excitable cell types and are regulated by channel-interacting proteins, including the cellular calcium sensor calmodulin and fibroblast growth factor homologous factors. Both of these are known to bind the NaV cytosolic C-terminal domain and modulate the channel's electrophysiology, but it was unknown whether they had any allosteric interactions with each other. A recent rigorous study provides insights into the molecular interactions of these ion channels and their partners that crucially take the cellular landscape into consideration.


Subject(s)
Voltage-Gated Sodium Channels/physiology , Animals , Humans
7.
J Gen Physiol ; 153(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33306788

ABSTRACT

Voltage-gated sodium channels (NaVs) are membrane proteins responsible for the rapid upstroke of the action potential in excitable cells. There are nine human voltage-sensitive NaV1 isoforms that, in addition to their sequence differences, differ in tissue distribution and specific function. This review focuses on isoforms NaV1.4 and NaV1.5, which are primarily expressed in skeletal and cardiac muscle cells, respectively. The determination of the structures of several eukaryotic NaVs by single-particle cryo-electron microscopy (cryo-EM) has brought new perspective to the study of the channels. Alignment of the cryo-EM structure of the transmembrane channel pore with x-ray crystallographic structures of the cytoplasmic domains illustrates the complementary nature of the techniques and highlights the intricate cellular mechanisms that modulate these channels. Here, we review structural insights into the cytoplasmic C-terminal regulation of NaV1.4 and NaV1.5 with special attention to Ca2+ sensing by calmodulin, implications for disease, and putative channel dimerization.


Subject(s)
Voltage-Gated Sodium Channels , Action Potentials , Calmodulin/metabolism , Cryoelectron Microscopy , Humans , Myocytes, Cardiac/metabolism
8.
Cell Rep ; 33(7): 108402, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33207190

ABSTRACT

Salivary proteins are essential for maintaining health in the oral cavity and proximal digestive tract, and they serve as potential diagnostic markers for monitoring human health and disease. However, their precise organ origins remain unclear. Through transcriptomic analysis of major adult and fetal salivary glands and integration with the saliva proteome, the blood plasma proteome, and transcriptomes of 28+ organs, we link human saliva proteins to their source, identify salivary-gland-specific genes, and uncover fetal- and adult-specific gene repertoires. Our results also provide insights into the degree of gene retention during gland maturation and suggest that functional diversity among adult gland types is driven by specific dosage combinations of hundreds of transcriptional regulators rather than by a few gland-specific factors. Finally, we demonstrate the heterogeneity of the human acinar cell lineage. Our results pave the way for future investigations into glandular biology and pathology, as well as saliva's use as a diagnostic fluid.


Subject(s)
Saliva/chemistry , Saliva/metabolism , Salivary Glands/metabolism , Adult , Aged , Female , Fetus , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Humans , Male , Middle Aged , Mouth/metabolism , Proteome/metabolism , Salivary Glands/physiology , Salivary Proteins and Peptides/metabolism , Structure-Activity Relationship , Transcriptome/genetics
9.
J Mol Cell Cardiol ; 139: 176-189, 2020 02.
Article in English | MEDLINE | ID: mdl-32004507

ABSTRACT

The renal-outer-medullary­potassium (ROMK) channel, mutated in Bartter's syndrome, regulates ion exchange in kidney, but its extra-renal functions remain unknown. Additionally, ROMK was postulated to be the pore-forming subunit of the mitochondrial ATP-sensitive K+ channel (mitoKATP), a mediator of cardioprotection. Using global and cardiomyocyte-specific knockout mice (ROMK-GKO and ROMK-CKO respectively), we characterize the effects of ROMK knockout on mitochondrial ion handling, the response to pharmacological KATP channel modulators, and ischemia/reperfusion (I/R) injury. Mitochondria from ROMK-GKO hearts exhibited a lower threshold for Ca2+-triggered permeability transition pore (mPTP) opening but normal matrix volume changes during oxidative phosphorylation. Isolated perfused ROMK-GKO hearts exhibited impaired functional recovery and increased infarct size when I/R was preceded by an ischemic preconditioning (IPC) protocol. Because ROMK-GKO mice exhibited severe renal defects and cardiac remodeling, we further characterized ROMK-CKO hearts to avoid confounding systemic effects. Mitochondria from ROMK-CKO hearts had unchanged matrix volume responses during oxidative phosphorylation and still swelled upon addition of a mitoKATP opener, but exhibited a lower threshold for mPTP opening, similar to GKO mitochondria. Nevertheless, I/R induced damage was not exacerbated in ROMK-CKO hearts, either ex vivo or in vivo. Lastly, we examined the response of ROMK-CKO hearts to ex vivo I/R injury with or without IPC and found that IPC still protected these hearts, suggesting that cardiomyocyte ROMK does not participate significantly in the cardioprotective pathway elicited by IPC. Collectively, our findings from these novel strains of mice suggest that cardiomyocyte ROMK is not a central mediator of mitoKATP function, although it can affect mPTP activation threshold.


Subject(s)
Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Potassium Channels, Inwardly Rectifying/deficiency , Potassium Channels/metabolism , Animals , Animals, Newborn , CRISPR-Cas Systems/genetics , Calcium/metabolism , Electrophysiological Phenomena , Gene Editing , Gene Knockout Techniques , Hemodynamics , Ischemic Preconditioning, Myocardial , Mice, Knockout , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/pathology , Organ Specificity , Perfusion , Phenotype , Potassium Channels, Inwardly Rectifying/metabolism
10.
Sci Rep ; 9(1): 5940, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976021

ABSTRACT

ADP-ribosylation is a post-translational modification that occurs on chemically diverse amino acids, including aspartate, glutamate, lysine, arginine, serine and cysteine on proteins and is mediated by ADP-ribosyltransferases, including a subset commonly known as poly(ADP-ribose) polymerases. ADP-ribose can be conjugated to proteins singly as a monomer or in polymeric chains as poly(ADP-ribose). While ADP-ribosylation can be reversed by ADP-ribosylhydrolases, this protein modification can also be processed to phosphoribosylation by enzymes possessing phosphodiesterase activity, such as snake venom phosphodiesterase, mammalian ectonucleotide pyrophosphatase/phosphodiesterase 1, Escherichia coli RppH, Legionella pneumophila Sde and Homo sapiens NudT16 (HsNudT16). Our studies here sought to utilize X-ray crystallographic structures of HsNudT16 in complex with monomeric and dimeric ADP-ribose in identifying the active site for binding and processing free and protein-conjugated ADP-ribose into phosphoribose forms. These structural data guide rational design of mutants that widen the active site to better accommodate protein-conjugated ADP-ribose. We identified that several HsNudT16 mutants (Δ17, F36A, and F61S) have reduced activity for free ADP-ribose, similar processing ability against protein-conjugated mono(ADP-ribose), but improved catalytic efficiency for protein-conjugated poly(ADP-ribose). These HsNudT16 variants may, therefore, provide a novel tool to investigate different forms of ADP-ribose.


Subject(s)
Mutation , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Protein Processing, Post-Translational , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , ADP-Ribosylation , Catalytic Domain , Crystallography, X-Ray , Humans , Poly Adenosine Diphosphate Ribose/chemistry , Poly(ADP-ribose) Polymerases/genetics , Protein Conformation , Pyrophosphatases/genetics
11.
Development ; 145(21)2018 11 05.
Article in English | MEDLINE | ID: mdl-30305288

ABSTRACT

The ductal system of the salivary gland has long been postulated to be resistant to radiation-induced damage, a common side effect incurred by head and neck cancer patients receiving radiotherapy. Yet, whether the ducts are capable of regenerating after genotoxic injury, or whether damage to ductal cells induces lineage plasticity, as has been reported in other organ systems, remains unknown. Here, using the murine salivary gland, we show that two ductal progenitor populations, marked exclusively by KRT14 and KIT, maintain non-overlapping ductal compartments after radiation exposure but do so through distinct cellular mechanisms. KRT14+ progenitor cells are fast-cycling cells that proliferate in response to radiation-induced damage in a sustained manner and divide asymmetrically to produce differentiated cells of the larger granulated ducts. Conversely, KIT+ intercalated duct cells are long-lived progenitors for the intercalated ducts that undergo few cell divisions either during homeostasis or after gamma radiation, thus maintaining ductal architecture with slow rates of cell turnover. Together, these data illustrate the regenerative capacity of the salivary ducts and highlight the heterogeneity in the damage responses used by salivary progenitor cells to maintain tissue architecture.


Subject(s)
Radiation Injuries/therapy , Salivary Ducts/pathology , Salivary Ducts/radiation effects , Stem Cell Transplantation , Stem Cells/cytology , Acinar Cells/metabolism , Animals , Animals, Newborn , Asymmetric Cell Division , Cell Lineage , Cell Proliferation , Epithelial Cells/metabolism , Female , Humans , Keratin-14/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Proto-Oncogene Proteins c-kit/metabolism , Radiation Injuries/pathology , Salivary Ducts/metabolism , Submandibular Gland/metabolism , Submandibular Gland/pathology , Submandibular Gland/radiation effects
12.
EMBO Mol Med ; 10(3)2018 03.
Article in English | MEDLINE | ID: mdl-29335337

ABSTRACT

Salivary gland acinar cells are routinely destroyed during radiation treatment for head and neck cancer that results in a lifetime of hyposalivation and co-morbidities. A potential regenerative strategy for replacing injured tissue is the reactivation of endogenous stem cells by targeted therapeutics. However, the identity of these cells, whether they are capable of regenerating the tissue, and the mechanisms by which they are regulated are unknown. Using in vivo and ex vivo models, in combination with genetic lineage tracing and human tissue, we discover a SOX2+ stem cell population essential to acinar cell maintenance that is capable of replenishing acini after radiation. Furthermore, we show that acinar cell replacement is nerve dependent and that addition of a muscarinic mimetic is sufficient to drive regeneration. Moreover, we show that SOX2 is diminished in irradiated human salivary gland, along with parasympathetic nerves, suggesting that tissue degeneration is due to loss of progenitors and their regulators. Thus, we establish a new paradigm that salivary glands can regenerate after genotoxic shock and do so through a SOX2 nerve-dependent mechanism.


Subject(s)
Radiation Injuries/pathology , Radiation Injuries/physiopathology , Regeneration , SOXB1 Transcription Factors/metabolism , Salivary Glands/pathology , Salivary Glands/physiopathology , Acetylcholine/metabolism , Acinar Cells/metabolism , Acinar Cells/radiation effects , Adult , Aged , Animals , Cell Lineage/radiation effects , Cell Proliferation/radiation effects , Chorda Tympani Nerve/pathology , Chorda Tympani Nerve/radiation effects , Female , Homeostasis , Humans , Male , Mice, Inbred C57BL , Middle Aged , Radiation Injuries/metabolism , Radiation, Ionizing , Receptors, Muscarinic/metabolism , Salivary Glands/radiation effects , Signal Transduction , Stem Cells/metabolism , Stem Cells/radiation effects
13.
PLoS One ; 12(9): e0184916, 2017.
Article in English | MEDLINE | ID: mdl-28926640

ABSTRACT

Sjögren's syndrome (SS) is a chronic, autoimmune exocrinopathy that leads to severe dryness of the mouth and eyes. Exocrine function is highly regulated by neuronal mechanisms but little is known about the link between chronic inflammation, innervation and altered exocrine function in the diseased eyes and exocrine glands of SS patients. To gain a better understanding of neuronal regulation in the immunopathogenesis of autoimmune exocrinopathy, we profiled a mouse model of spontaneous, autoimmune exocrinopathy that possess key characteristics of peripheral neuropathy experienced by SS patients. Mice deficient in the autoimmune regulator (Aire) gene developed spontaneous, CD4+ T cell-mediated exocrinopathy and aqueous-deficient dry eye that were associated with loss of nerves innervating the cornea and lacrimal gland. Changes in innervation and tear secretion were accompanied by increased proliferation of corneal epithelial basal cells, limbal expansion of KRT19-positive progenitor cells, increased vascularization of the peripheral cornea and reduced nerve function in the lacrimal gland. In addition, we found extensive loss of MIST1+ secretory acinar cells in the Aire -/- lacrimal gland suggesting that acinar cells are a primary target of the disease, Finally, topical application of ophthalmic steroid effectively restored corneal innervation in Aire -/- mice thereby functionally linking nerve loss with local inflammation in the aqueous-deficient dry eye. These data provide important insight regarding the relationship between chronic inflammation and neuropathic changes in autoimmune-mediated dry eye. Peripheral neuropathies characteristic of SS appear to be tightly linked with the underlying immunopathological mechanism and Aire -/- mice provide an excellent tool to explore the interplay between SS-associated immunopathology and peripheral neuropathy.


Subject(s)
Cornea/pathology , Lacrimal Apparatus/pathology , Sjogren's Syndrome/pathology , Transcription Factors/genetics , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation , Cornea/cytology , Cornea/drug effects , Cornea/metabolism , Disease Models, Animal , Female , Humans , Lacrimal Apparatus/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Neovascularization, Physiologic , Neurites/drug effects , Neurites/metabolism , Prednisolone/pharmacology , Prednisolone/therapeutic use , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Tears/metabolism , Transcription Factors/deficiency , AIRE Protein
14.
Elife ; 62017 06 17.
Article in English | MEDLINE | ID: mdl-28623666

ABSTRACT

Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis. Despite SOX2 being expressed by progenitors that give rise to both acinar and duct cells, genetic ablation of SOX2 results in a failure to establish acini but not ducts. Furthermore, we show that SOX2 targets acinar-specific genes and is essential for the survival of acinar but not ductal cells. Finally, we illustrate an unexpected and novel role for peripheral nerves in the creation of acini throughout development via regulation of SOX2. Thus, SOX2 is a master regulator of the acinar cell lineage essential to the establishment of a functional organ.


Subject(s)
Acinar Cells/physiology , Cell Differentiation , Organogenesis , SOXB1 Transcription Factors/metabolism , Salivary Glands/cytology , Salivary Glands/embryology , Animals , Gene Knockout Techniques , Humans , Mice
15.
Development ; 144(13): 2517-2528, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28576768

ABSTRACT

The tear-producing lacrimal gland is a tubular organ that protects and lubricates the ocular surface. The lacrimal gland possesses many features that make it an excellent model in which to investigate tubulogenesis, but the cell types and lineage relationships that drive lacrimal gland formation are unclear. Using single-cell sequencing and other molecular tools, we reveal novel cell identities and epithelial lineage dynamics that underlie lacrimal gland development. We show that the lacrimal gland from its earliest developmental stages is composed of multiple subpopulations of immune, epithelial and mesenchymal cell lineages. The epithelial lineage exhibits the most substantial cellular changes, transitioning through a series of unique transcriptional states to become terminally differentiated acinar, ductal and myoepithelial cells. Furthermore, lineage tracing in postnatal and adult glands provides the first direct evidence of unipotent KRT5+ epithelial cells in the lacrimal gland. Finally, we show conservation of developmental markers between the developing mouse and human lacrimal gland, supporting the use of mice to understand human development. Together, our data reveal crucial features of lacrimal gland development that have broad implications for understanding epithelial organogenesis.


Subject(s)
Cell Lineage , Epithelial Cells/cytology , Lacrimal Apparatus/cytology , Lacrimal Apparatus/embryology , Acinar Cells/cytology , Acinar Cells/metabolism , Animals , Biomarkers/metabolism , Epithelial Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Mice , Phenotype , Sequence Analysis, RNA , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL