Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dermatol ; 50(1): 46-56, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36184911

ABSTRACT

UVA1 therapy is effective in the treatment of inflammatory and autoimmune skin diseases. The mode of action of UVA1 therapy is not completely understood and especially data on cells of the innate immune system like monocytes, which are critically involved in many inflammatory processes, are sparse. We wanted to answer the question whether UVA1 irradiation alters functional properties of human monocytes. We treated human peripheral blood monocytes in vitro with 2 J/cm2 UVA1 light, incubated the cells for 48 h and examined both functional properties and alterations in the gene and protein expression profile. While UVA1 did not alter cell viability or susceptibility to apoptosis inducing agents, it decreased the capacity of monocytes for phagocytosis and to eliminate infectious agents like Leishmania major. Moreover, we measured a significantly reduced production of interleukin (IL)-1ß mRNA in lipopolysaccharide activated monocytes after UVA1 treatment. Importantly, UVA1-treated monocytes not only produce less IL-1ß, but also upregulate expression of the anti-inflammatory IL-1ß decoy receptor. Our data provide evidence that UVA1 radiation not only interferes with fundamental monocyte properties like phagocytosis, pathogen killing and activation, but could also specifically attenuate pro-inflammatory IL-1 effects. This might constitute a hitherto unknown anti-inflammatory mechanism of UVA1 in human monocytes.


Subject(s)
Monocytes , Humans
2.
J Immunol ; 209(6): 1048-1058, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35985788

ABSTRACT

In IgA vasculitis (IgAV) perivascular deposition of IgA1 immune complexes (IgA-ICs) is traditionally considered the fundamental trigger for polymorphonuclear neutrophil (PMN)-mediated damage. We propose that IgA-IC deposition, although mandatory, is not sufficient alone for IgAV. Serum IgA-IC levels and IgA-IC binding to PMNs were quantified in IgAV patients and controls. Activation of PMNs was evaluated by neutrophil extracellular trap (NET) release, adherence, and cytotoxicity assays and in a flow system to mirror conditions at postcapillary venules. In vitro results were related to findings in biopsies and a mouse vasculitis model. During acute IgAV flares we observed elevated serum levels of IgA-ICs and increased IgA-IC binding to circulating PMNs. This IgA-IC binding primed PMNs with consequent lowering of the threshold for NETosis, demonstrated by significantly higher release of NETs from PMNs activated in vitro and PMNs from IgAV patients with flares compared with surface IgA-negative PMNs after flares. Blocking of FcαRI abolished these effects, and complement was not essential. In the flow system, marked NETosis only occurred after PMNs had adhered to activated endothelial cells. IgA-IC binding enhanced this PMN tethering and consequent NET-mediated endothelial cell injury. Reflecting these in vitro findings, we visualized NETs in close proximity to endothelial cells and IgA-coated PMNs in tissue sections of IgAV patients. Inhibition of NET formation and knockout of myeloperoxidase in a murine model of IC vasculitis significantly reduced vessel damage in vivo. Binding of IgA-ICs during active IgAV primes PMNs and promotes vessel injury through increased adhesion of PMNs to the endothelium and enhanced NETosis.


Subject(s)
IgA Vasculitis , Vasculitis , Animals , Antigen-Antibody Complex/metabolism , Endothelial Cells , Immunoglobulin A , Mice , Neutrophils , Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...