Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Front Plant Sci ; 15: 1436201, 2024.
Article in English | MEDLINE | ID: mdl-39109053

ABSTRACT

Trichoderma afroharzianum, a ubiquitous soil-borne fungus found on plant roots and decaying residues, displays competitive traits and mycoparasitic behavior against diverse microorganisms. Selected strains of this fungus are known in agriculture for their beneficial effects on plant growth and as bio-fungicides. However, recent findings have pinpointed Trichoderma afroharzianum as the causal agent behind maize ear rot disease in Europe since 2018, notably impacting maize cobs in Germany, France, and Italy. This study aims to evaluate the severity of Trichoderma ear rot disease on maize fresh matter content and specific quality parameters under semi-field conditions. Two distinct maize varieties were artificially inoculated with a pathogenic Trichoderma isolate at the flowering stage using needle pin or silk channel methods. Disease severity was assessed visually at the time of harvest based on the percentage of infected kernels according to EPPO Guidelines (PP 1/285). Fresh matter content and quality parameters such as alpha-amylase activity, C/N ratio, water, and sugar content were analyzed. Results showed that needle pin inoculation led to higher disease severity (60%) compared to silk channel inoculation (39%). Cob weight decreased significantly at the highest disease severity level by up to 50% compared to control plants. In both varieties, alpha-amylase activity increased significantly with higher Trichoderma disease severity, resulting in starch degradation and increased glucose release. The germination rate was severely affected by the infection, with only 22% of grains germinating, and the seedlings showed shortened and deformed growth. This is the first report on Trichoderma ear rot infection and its effect on fresh matter content and quality parameters in maize after artificial inoculation under field conditions. The results address an important knowledge gap and provide valuable insights into the infection pathway and impact on maize quality.

2.
Protein Expr Purif ; 219: 106483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38609025

ABSTRACT

Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.


Subject(s)
Dihydroxyphenylalanine , Mytilus edulis , Animals , Dihydroxyphenylalanine/chemistry , Dihydroxyphenylalanine/metabolism , Mytilus edulis/genetics , Mytilus edulis/chemistry , Mytilus edulis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Verrucomicrobia/genetics , Verrucomicrobia/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/chemistry , Proteins/genetics , Proteins/chemistry , Proteins/isolation & purification , Hydroxylation , Escherichia coli/genetics , Escherichia coli/metabolism
3.
Materials (Basel) ; 17(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541474

ABSTRACT

High-temperature (HT) geothermal wells can provide green power 24 hours a day, 7 days a week. Under harsh environmental and operational conditions, the long-term durability requirements of such wells require special cementitious composites for well construction. This paper reports a comprehensive assessment of geothermal cement composites in cyclic pressure function laboratory tests and field exposures in an HT geothermal well (300-350 °C), as well as a numerical model to complement the experimental results. Performances of calcium-aluminate cement (CAC)-based composites and calcium-free cement were compared against the reference ordinary Portland cement (OPC)/silica blend. The stability and degradation of the tested materials were characterized by crystalline composition, thermo-gravimetric and elemental analyses, morphological studies, water-fillable porosity, and mechanical property measurements. All CAC-based formulations outperformed the reference blend both in the function and exposure tests. The reference OPC/silica lost its mechanical properties during the 9-month well exposure through extensive HT carbonation, while the properties of the CAC-based blends improved over that period. The Modified Cam-Clay (MCC) plasticity parameters of several HT cement formulations were extracted from triaxial and Brazilian tests and verified against the experimental results of function cyclic tests. These parameters can be used in well integrity models to predict the field-scale behavior of the cement sheath under geothermal well conditions.

4.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542501

ABSTRACT

Increased signs of DNA damage have been associated to aging and neurodegenerative diseases. DNA damage repair mechanisms are tightly regulated and involve different pathways depending on cell types and proliferative vs. postmitotic states. Amongst them, fused in sarcoma (FUS) was reported to be involved in different pathways of single- and double-strand break repair, including an early recruitment to DNA damage. FUS is a ubiquitously expressed protein, but if mutated, leads to a more or less selective motor neurodegeneration, causing amyotrophic lateral sclerosis (ALS). Of note, ALS-causing mutation leads to impaired DNA damage repair. We thus asked whether FUS recruitment dynamics differ across different cell types putatively contributing to such cell-type-specific vulnerability. For this, we generated engineered human induced pluripotent stem cells carrying wild-type FUS-eGFP and analyzed different derivatives from these, combining a laser micro-irradiation technique and a workflow to analyze the real-time process of FUS at DNA damage sites. All cells showed FUS recruitment to DNA damage sites except for hiPSC, with only 70% of cells recruiting FUS. In-depth analysis of the kinetics of FUS recruitment at DNA damage sites revealed differences among cellular types in response to laser-irradiation-induced DNA damage. Our work suggests a cell-type-dependent recruitment behavior of FUS during the DNA damage response and repair procedure. The presented workflow might be a valuable tool for studying the proteins recruited at the DNA damage site in a real-time course.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Humans , Amyotrophic Lateral Sclerosis/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Induced Pluripotent Stem Cells/metabolism , DNA Damage , Mutation
5.
Cells ; 12(5)2023 02 24.
Article in English | MEDLINE | ID: mdl-36899872

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/pathology , Delayed Diagnosis , Motor Neurons/pathology , Biomarkers
6.
Cell Rep ; 42(2): 112025, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36696267

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Humans , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Mutation , Cytoplasm/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
7.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955468

ABSTRACT

The triggers for the development of multiple sclerosis (MS) have not been fully understood to date. One hypothesis proposes a viral etiology. Interestingly, viral proteins from human endogenous retroviruses (HERVs) may play a role in the pathogenesis of MS. Allelic variants of the HERV-K18 env gene represent a genetic risk factor for MS, and the envelope protein is considered to be an Epstein-Barr virus-trans-activated superantigen. To further specify a possible role for HERV-K18 in MS, the present study examined the immunogenicity of the purified surface unit (SU). HERV-K18(SU) induced envelope-specific plasma IgG in immunized mice and triggered proliferation of T cells isolated from these mice. It did not trigger phenotypic changes in a mouse model of experimental autoimmune encephalomyelitis. Further studies are needed to investigate the underlying mechanisms of HERV-K18 interaction with immune system regulators in more detail.


Subject(s)
Endogenous Retroviruses , Epstein-Barr Virus Infections , Multiple Sclerosis , Animals , Endogenous Retroviruses/genetics , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Humans , Melphalan , Mice , gamma-Globulins
8.
Front Nutr ; 9: 916642, 2022.
Article in English | MEDLINE | ID: mdl-35911109

ABSTRACT

This study was conducted to determine the volatile organic compounds (VOCs) associated with fruit flavor in diverse tomato cultivars (salad and cocktail cultivars) under organic low-input production. For this objective, 60 cultivars deriving from very diverse breeding programs 1880-2015 were evaluated in 2015, and a subset of 20 cultivars was selected for further evaluation in 2016. The diversity of instrumentally determined traits, especially for VOCs concentration and sensory properties (fruit firmness, juiciness, skin firmness, sweetness, sourness, aroma, and acceptability), was investigated at two harvest dates. The evaluation of the cultivars exhibited a wide range of variation for all studied traits, with the exception of a few VOCs. Cultivar had the most important effect on all instrumentally determined traits, while the influence of cultivar × harvest date × year interaction was significant for 17 VOCs, but not for total soluble solid (TSS) and titratable acidity (TA). The VOCs with the highest proportion (>8%) were hexanal, 6-methyl-5-heptene-2-one, 2-isobutylthiazole, and (E)-2-hexenal, which were identified in all cultivars. Twelve VOCs significantly correlated with one or more sensory attributes and these VOCs also allowed differentiation of the fruit type. Among these VOCs, phenylethyl alcohol and benzyl alcohol positively correlated with acceptability in the cocktail cultivars, whereas 2-isobuthylthiazole and 6-methyl-5-hepten-2-ol negatively correlated with acceptability in the salad cultivars. As a result of this study, organic breeders are recommended to use cultivars from a wide range of breeding programs to improve important quality and agronomic traits. As examples, salad tomatoes "Campari F1", "Green Zebra", and "Auriga", as well as cocktail tomatoes "Supersweet 100 F1", "Sakura F1", and "Black Cherry" showed higher scores for the sensory attributes aroma and acceptability under organic low-input growing conditions. It remains a challenge for breeders and growers to reduce the trade-off of yield and quality.

9.
Front Plant Sci ; 13: 920212, 2022.
Article in English | MEDLINE | ID: mdl-35898212

ABSTRACT

Potatoes are an important staple food with high yield potential and great nutritional value. Potassium (K) fertilisation can increase both tuber yield and quality, but its effects differ depending on the K fertilisation form. Potatoes are known to be chloride sensitive, since chloride ions can influence, for example, the starch content. Therefore, fertilisations shortly before planting using potassium sulphate (K2SO4) are often recommended instead of potassium chloride (KCl). However, the use of different fertilisation forms is contradictory, and the chloride sensitivity of potatoes remains unclear. To examine this issue in more detail, a 2-year field experiment using two cultivars, "Laura" and "Marabel," was conducted. K fertilisation with 240 kg K2O as K2SO4 and KCl was applied, and the control remained unfertilised. Quality traits, including internal and external parameters, were analysed after harvest and after 5 months of storage at 6°C. The results revealed minor effects on yield, but the starch content and ascorbic acid concentration were reduced due to the KCl supply. Furthermore, the reducing sugar concentration in tubers increased during storage more after KCl compared to K2SO4 fertilisation. Moreover, volatile compounds were affected by the K fertilisation form, with higher levels of lipid-derived off-flavour compounds after KCl application. However, the effects of cultivation year, cultivar, and storage interacted with the influence of the fertilisation form. In summary, KCl fertilisation can disadvantageously influence several quality traits, but the use of potato cultivars should also be considered when recommending fertilisers.

10.
Front Neurol ; 13: 796777, 2022.
Article in English | MEDLINE | ID: mdl-35401404

ABSTRACT

Statistical evaluation of empirical data is the basis of the modern scientific method. Available tools include various hypothesis tests for specific data structures, as well as methods that are used to quantify the uncertainty of an obtained result. Statistics are pivotal, but many misconceptions arise due to their complexity and difficult-to-acquire mathematical background. Even though most studies rely on a frequentist interpretation of statistical readouts, the application of Bayesian statistics has increased due to the availability of easy-to-use software suites and an increased outreach favouring this topic in the scientific community. Bayesian statistics take our prior knowledge together with the obtained data to express a degree of belief how likely a certain event is. Bayes factor hypothesis testing (BFHT) provides a straightforward method to evaluate multiple hypotheses at the same time and provides evidence that favors the null hypothesis or alternative hypothesis. In the present perspective, we show the merits of BFHT for three different use cases, including a clinical trial, basic research as well as a single case study. Here we show that Bayesian statistics is a viable addition of a scientist's statistical toolset, which can help to interpret data.

11.
J Biotechnol ; 346: 1-10, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35038459

ABSTRACT

Erythropoietin (EPO) is a glycoprotein hormone that has been used to treat anemia in patients with chronic kidney disease and in cancer patients who are receiving chemotherapy. Here, we investigated the accessibility of the glutamine (Gln, Q) residues of recombinant human erythropoietin (rHuEPO) towards a thermoresistant variant microbial transglutaminase (mTGase), TG16 with the aim of developing novel rHuEPO conjugates that may potentially enhance its biological efficacy. As a model bioconjugation, we studied the reactivity of rHuEPO towards TG16 with a low molar mass amine group containing substrate, monodansyl cadaverine (MDC). The reactions were carried out at a Tm of 54.3 °C, the transition temperature of rHuEPO. Characterization by SDS-PAGE and mass spectrometry confirmed the conjugates formation. Then, we examined the conjugation of rHuEPO with a biodegradable and biocompatible polyester, poly(D-sorbitol adipate) (PDSA). To achieve this, PDSA was enzymatically synthesized using lipase B from Candida antartica (CAL-B), chemically modified with side chains having free primary amine (NH2) groups that can be acyl acceptor substrate of TG16, thoroughly characterized by 1H NMR spectroscopy, and then applied for the TG16-mediated conjugation reaction with rHuEPO. rHuEPO conjugates generated by this approach were identified by SDS-PAGE proving that the amine-grafted PDSA is accepted as a substrate for TG16. The successful conjugation was further verified by the detection of high molar mass fluorescent bands after labelling of amine-grafted PDSA with rhodamine B-isothiocyanate. Overall, this enzymatic procedure is considered as an effective approach to prepare biodegradable rHuEPO-polymer conjugates even in the presence of N- and O-glycans.


Subject(s)
Anemia , Erythropoietin , Anemia/drug therapy , Humans , Polyesters , Recombinant Proteins/therapeutic use , Transglutaminases
12.
Front Plant Sci ; 12: 723862, 2021.
Article in English | MEDLINE | ID: mdl-34527013

ABSTRACT

The limited availability of phosphorus (P) in soils causes a major constraint in the productivity of potatoes, which requires increased knowledge of plant adaptation responses in this condition. In this study, six potato cultivars, namely, Agria, Lady Claire, Milva, Lilly, Sieglinde, and Verdi, were assessed for their responses on plant growth, leaf physiology, P use efficiency (PUE), and tuber quality with three P levels (Plow, Pmed, and Phigh). The results reveal a significant variation in the cultivars in response to different P availabilities. P-efficient cultivars, Agria, Milva, and Lilly, possessed substantial plant biomass, tuber yield, and high P uptake efficiency (PUpE) under low P supply conditions. The P-inefficient cultivars, Lady Claire, Sieglinde, and Verdi, could not produce tubers under P deprivation conditions, as well as the ability to efficiently uptake P under low-level conditions, but they were efficient in P uptake under high soil P conditions. Improved PUpE is important for plant tolerance with limited P availability, which results in the efficient use of the applied P. At the leaf level, increased accumulations of nitrate, sulfate, sucrose, and proline are necessary for a plant to acclimate to P deficiency-induced stress and to mobilize leaf inorganic phosphate to increase internal PUE and photosynthesis. The reduction in plant biomass and tuber yield under P-deficient conditions could be caused by reduced CO2 assimilation. Furthermore, P deficiency significantly reduced tuber yield, dry matter, and starch concentration in Agria, Milva, and Lilly. However, contents of tuber protein, sugars, and minerals, as well as antioxidant capacity, were enhanced under these conditions in these cultivars. These results highlight the important traits contributing to potato plant tolerance under P-deficient conditions and indicate an opportunity to improve the P efficiency and tuber quality of potatoes under deficient conditions using more efficient cultivars. Future research to evaluate molecular mechanisms related to P and sucrose translocation, and minimize tuber yield reduction under limited P availability conditions is necessary.

13.
Int J Mol Sci ; 22(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068175

ABSTRACT

Low phosphorus (P) availability is a major limiting factor for potatoes. P fertilizer is applied to enhance P availability; however, it may become toxic when plants accumulate at high concentrations. Therefore, it is necessary to gain more knowledge of the morphological and biochemical processes associated with P deficiency and toxicity for potatoes, as well as to explore an alternative approach to ameliorate the P deficiency condition. A comprehensive study was conducted (I) to assess plant morphology, mineral allocation, and metabolites of potatoes in response to P deficiency and toxicity; and (II) to evaluate the potency of plant growth-promoting rhizobacteria (PGPR) in improving plant biomass, P uptake, and metabolites at low P levels. The results revealed a reduction in plant height and biomass by 60-80% under P deficiency compared to P optimum. P deficiency and toxicity conditions also altered the mineral concentration and allocation in plants due to nutrient imbalance. The stress induced by both P deficiency and toxicity was evident from an accumulation of proline and total free amino acids in young leaves and roots. Furthermore, root metabolite profiling revealed that P deficiency reduced sugars by 50-80% and organic acids by 20-90%, but increased amino acids by 1.5-14.8 times. However, the effect of P toxicity on metabolic changes in roots was less pronounced. Under P deficiency, PGPR significantly improved the root and shoot biomass, total root length, and root surface area by 32-45%. This finding suggests the potency of PGPR inoculation to increase potato plant tolerance under P deficiency.


Subject(s)
Phosphorus/metabolism , Plant Development , Rhizobiaceae/physiology , Solanum tuberosum/anatomy & histology , Solanum tuberosum/metabolism , Stress, Physiological , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Solanum tuberosum/growth & development , Solanum tuberosum/microbiology
14.
Life Sci Alliance ; 4(4)2021 04.
Article in English | MEDLINE | ID: mdl-33619157

ABSTRACT

Intronic hexanucleotide repeat expansions (HREs) in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis, a devastating, incurable motoneuron (MN) disease. The mechanism by which HREs trigger pathogenesis remains elusive. The discovery of repeat-associated non-ATG (RAN) translation of dipeptide repeat proteins (DPRs) from HREs along with reduced exonic C9ORF72 expression suggests gain of toxic functions (GOFs) through DPRs versus loss of C9ORF72 functions (LOFs). Through multiparametric high-content (HC) live profiling in spinal MNs from induced pluripotent stem cells and comparison to mutant FUS and TDP43, we show that HRE C9ORF72 caused a distinct, later spatiotemporal appearance of mainly proximal axonal organelle motility deficits concomitant to augmented DNA double-strand breaks (DSBs), RNA foci, DPRs, and apoptosis. We show that both GOFs and LOFs were necessary to yield the overall C9ORF72 pathology. Increased RNA foci and DPRs concurred with onset of axon trafficking defects, DSBs, and cell death, although DSB induction itself did not phenocopy C9ORF72 mutants. Interestingly, the majority of LOF-specific DEGs were shared with HRE-mediated GOF DEGs. Finally, C9ORF72 LOF was sufficient-albeit to a smaller extent-to induce premature distal axonal trafficking deficits and increased DSBs.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Apoptosis , Axons/metabolism , Axons/pathology , Cells, Cultured , Cellular Senescence , Cytoskeleton/metabolism , DNA Breaks, Double-Stranded , DNA-Binding Proteins/genetics , Energy Metabolism , Gain of Function Mutation , Humans , Loss of Function Mutation , Microscopy, Fluorescence , Motor Neurons/metabolism , Organelles/metabolism , RNA-Binding Protein FUS/genetics , Repetitive Sequences, Nucleic Acid
16.
Front Plant Sci ; 11: 589692, 2020.
Article in English | MEDLINE | ID: mdl-33329651

ABSTRACT

In many regions of the world, human nutrition is still characterized by an insufficient intake of essential nutrients like minerals such as iron (Fe) and zinc (Zn). In view of decreasing resources and a growing world population, the efficiency and the sustainability of cultivation systems should be considered not only in terms of crop yield and profit margin but also in terms of the yield of essential nutrients. Tomatoes are the most consumed vegetable in the world. Organic outdoor tomato cultivation is generally characterized by a higher diversity of varieties and lower fertilization input compared to conventional production. A 2-year field experiment with a set of 20 cultivars was performed to evaluate their variation regarding fruit mineral concentrations [potassium (K), calcium (Ca), magnesium (Mg), phosphorous (P), Fe, and Zn], their contribution to the dietary reference intake (DRI), and the nutritional yields (adults ha-1 year-1). Results show that mineral concentrations differed significantly by cultivar and by year. However, even though significant genotype-by-year effects appear, several cultivars exhibit high genotype stability across years for the single traits studied. Taking this together with medium-to-high heritability, genetics strongly controls most studied traits. Among the cultivars, the contribution of 100 g fresh fruits varied from 4.5 to 7.7% for K, 0.8 to 1.8% for Ca, 2.3 to 4.4% for Mg, 3 to 6.6% for P, 3.1 to 6.9% for Fe, and 1.9 to 4.2% for Zn to meet daily requirements. Based on average fruit yields per hectare, the cultivars varied with regard to the nutritional yields for all the studied minerals, but most strongly for Fe (44-120 adults ha-1 year-1) and Zn (22-84 adults ha-1 year-1). In terms of contribution to the DRI and nutritional yield for Fe, the cocktail cultivar "Bartelly F1" produced the highest results, while for Zn the salad cultivar "Bocati F1" showed the highest values. Our results show that the targeted use of tomato biodiversity in organic outdoor production can be suitable to achieve high fruit yields as well as to produce high nutritional yields per unit area, thus contributing to more effective land use and improved food security. These findings also provide valuable insights for tomato breeders to improve the tomato fruit quality while maintaining yield.

17.
Int J Mol Sci ; 21(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113941

ABSTRACT

The human genome comprises 8% sequences of retroviral origin, so-called human endogenous retroviruses (HERVs). Most of these proviral sequences are defective, but some possess open reading frames. They can lead to the formation of viral transcripts, when activated by intrinsic and extrinsic factors. HERVs are thought to play a pathological role in inflammatory diseases and cancer. Since the consequences of activated proviral sequences in the human body are largely unexplored, selected envelope proteins of human endogenous retroviruses associated with inflammatory diseases, namely HERV-K18, HERV-K113, and HERV-Fc1, were investigated in the present study. A formation of glycosylated envelope proteins was demonstrated in different mammalian cell lines. Nevertheless, protein maturation seemed to be incomplete as no transport to the plasma membrane was observed. Instead, the proteins remained in the ER where they induced the expression of genes involved in unfolded protein response, such as HSPA5 and sXBP1. Furthermore, low expression levels of native envelope proteins were increased by codon optimization. Cell-free expression systems showed that both the transcriptional and translational level is affected. By generating different codon-optimized variants of HERV-K113 envelope, the influence of single rare t-RNA pools in certain cell lines was demonstrated. The mRNA secondary structure also appears to play an important role in the translation of the tested viral envelope proteins. In summary, the formation of certain HERV proteins is basically possible. However, their complete maturation and thus full biologic activity seems to depend on additional factors that might be disease-specific and await elucidation in the future.


Subject(s)
Endogenous Retroviruses/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Superantigens/genetics , Superantigens/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , A549 Cells , Animals , COS Cells , Cell Line , Cell-Free System , Chlorocebus aethiops , Endogenous Retroviruses/chemistry , Endogenous Retroviruses/genetics , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation , Glycosylation , HEK293 Cells , Humans , Membrane Proteins/chemistry , Molecular Conformation , Nucleic Acid Conformation , Open Reading Frames , Protein Biosynthesis , RNA, Messenger/chemistry , Superantigens/chemistry , Transcription, Genetic , Viral Envelope Proteins/chemistry
18.
Sci Rep ; 10(1): 15192, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32913239

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Int J Mol Sci ; 21(18)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967368

ABSTRACT

Amyotropic lateral sclerosis (ALS) is a lethally progressive and irreversible neurodegenerative disease marked by apparent death of motor neurons present in the spinal cord, brain stem and motor cortex. While more and more gene mutants being established for genetic ALS, the vast majority suffer from sporadic ALS (>90%). It has been challenging, thus, to model sporadic ALS which is one reason why the underlying pathophysiology remains elusive and has stalled the development of therapeutic strategies of this progressive motor neuron disease. To further unravel these pathological signaling pathways, human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from FUS- and SOD1 ALS patients and healthy controls were systematically compared to independent published datasets. Here through this study we created a gene profile of ALS by analyzing the DEGs, the Kyoto encyclopedia of Genes and Genomes (KEGG) pathways, the interactome and the transcription factor profiles (TF) that would identify altered molecular/functional signatures and their interactions at both transcriptional (mRNAs) and translational levels (hub proteins and TFs). Our findings suggest that FUS and SOD1 may develop from dysregulation in several unique pathways and herpes simplex virus (HSV) infection was among the topmost predominant cellular pathways connected to FUS and not to SOD1. In contrast, SOD1 is mainly characterized by alterations in the metabolic pathways and alterations in the neuroactive-ligand-receptor interactions. This suggests that different genetic ALS forms are singular diseases rather than part of a common spectrum. This is important for patient stratification clearly pointing towards the need for individualized medicine approaches in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , RNA-Binding Protein FUS , Superoxide Dismutase-1 , Aged , Amyotrophic Lateral Sclerosis/classification , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Female , Genome-Wide Association Study , Herpes Simplex/genetics , Herpes Simplex/metabolism , Humans , Male , Middle Aged , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Simplexvirus/genetics , Simplexvirus/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Transcriptome
20.
Front Plant Sci ; 11: 472, 2020.
Article in English | MEDLINE | ID: mdl-32477378

ABSTRACT

Consumer complaints about the flavor of fresh tomato fruits (Solanum lycopersicum L.) have increased in the past few decades, and numerous studies have been done on the flavor of tomatoes and how it is influenced. However, it has not yet been taken into account how consumer handling affects the flavor when considering the complete post-harvest chain-from retailer (distributor) to retail to consumer. In this study, the impact of two household storage regimes on the volatile profile and important flavor-related compounds were examined, considering the entire post-harvest handling. New breeding lines (n = 2) and their parental cultivars (n = 3) were evaluated. Fruits were harvested ripe and stored at 12.5°C for 1 day, at 20°C for 2 days, and afterward at either 20 or 7°C for another 4 days. The aroma volatile profile was measured using GC-MS and GC-FID. A trained panel was used to characterize the sensory attributes of the fruits. In both storage regimes, the relative amount of hexanal increased during the storage period in three of the five cultivars/breeding lines while benzaldehyde was the only volatile compound that decreased significantly in four cultivars/breeding lines. The relative concentration of the precursors of lipid-derived volatiles-linoleic (C18:2) and linolenic (C18:3) acid-did not change in both storage regimes. The lycopene and ß-carotene contents increased slightly during storage (20 and 7°C), as the carotenoid-derived volatile 6-methyl-5-hepten-2-one did. The fructose and glucose concentrations did not vary significantly, while the content of total soluble solids increased during both storage regimes. No significant difference could be found between the fruits stored at 20 or 7°C for 4 days after the post-harvest handling in all the parameters analyzed, including the sensory analysis, considering all cultivars/breeding lines. A storage temperature of 7°C is not detrimental for the flavor of ripe fruits under the experimental conditions used. The genetic background of the studied cultivars/breeding lines have a higher impact on the flavor variation than the two common household storage conditions when storing ripe fruits and taking the entire post-harvest handling into account.

SELECTION OF CITATIONS
SEARCH DETAIL