Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 8(3): 278-290, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38378821

ABSTRACT

In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug-transporter relationships. For 24 drugs with well-characterized drug-transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug-transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model's predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety.


Subject(s)
Intestines , Machine Learning , Humans , Animals , Mice , Swine , Pharmaceutical Preparations/metabolism , Drug Interactions , Biological Availability
2.
J Pharm Sci ; 113(3): 718-724, 2024 03.
Article in English | MEDLINE | ID: mdl-37690778

ABSTRACT

Triggerable coatings, such as pH-responsive polymethacrylate copolymers, can be used to protect the active pharmaceutical ingredients contained within oral solid dosage forms from the acidic gastric environment and to facilitate drug delivery directly to the intestine. However, gastrointestinal pH can be highly variable, which can reduce delivery efficiency when using pH-responsive drug delivery technologies. We hypothesized that biomaterials susceptible to proteolysis could be used in combination with other triggerable polymers to develop novel enteric coatings. Bioinformatic analysis suggested that silk fibroin is selectively degradable by enzymes in the small intestine, including chymotrypsin, but resilient to gastric pepsin. Based on the analysis, we developed a silk fibroin-polymethacrylate copolymer coating for oral dosage forms. In vitro and in vivo studies demonstrated that capsules coated with this novel silk fibroin formulation enable pancreatin-dependent drug release. We believe that this novel formulation and extensions thereof have the potential to produce more effective and personalized oral drug delivery systems for vulnerable populations including patients that have impaired and highly variable intestinal physiology.


Subject(s)
Fibroins , Humans , Pancreatin , Drug Delivery Systems , Polymethacrylic Acids , Polymers , Silk
3.
Nat Nanotechnol ; 16(6): 725-733, 2021 06.
Article in English | MEDLINE | ID: mdl-33767382

ABSTRACT

Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.


Subject(s)
Drug Carriers/chemistry , High-Throughput Screening Assays/methods , Nanoparticles/chemistry , Sorafenib/pharmacology , Terbinafine/pharmacology , Animals , Candida albicans/drug effects , Computer Simulation , Drug Carriers/chemical synthesis , Drug Design , Drug Evaluation, Preclinical/methods , Dynamic Light Scattering , Excipients/chemistry , Female , Glycyrrhizic Acid/chemistry , Humans , Machine Learning , Mice, Inbred Strains , Skin Absorption , Sorafenib/chemistry , Sorafenib/pharmacokinetics , Taurocholic Acid/chemistry , Terbinafine/chemistry , Tissue Distribution , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...