Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659908

ABSTRACT

Mechanical unloading and circulatory support with left ventricular assist devices (LVADs) mediate significant myocardial improvement in a subset of advanced heart failure (HF) patients. The clinical and biological phenomena associated with cardiac recovery are under intensive investigation. Left ventricular (LV) apical tissue, alongside clinical data, were collected from HF patients at the time of LVAD implantation (n=208). RNA was isolated and mRNA transcripts were identified through RNA sequencing and confirmed with RT-qPCR. To our knowledge this is the first study to combine transcriptomic and clinical data to derive predictors of myocardial recovery. We used a bioinformatic approach to integrate 59 clinical variables and 22,373 mRNA transcripts at the time of LVAD implantation for the prediction of post-LVAD myocardial recovery defined as LV ejection fraction (LVEF) ≥40% and LV end-diastolic diameter (LVEDD) ≤5.9cm, as well as functional and structural LV improvement independently by using LVEF and LVEDD as continuous variables, respectively. To substantiate the predicted variables, we used a multi-model approach with logistic and linear regressions. Combining RNA and clinical data resulted in a gradient boosted model with 80 features achieving an AUC of 0.731±0.15 for predicting myocardial recovery. Variables associated with myocardial recovery from a clinical standpoint included HF duration, pre-LVAD LVEF, LVEDD, and HF pharmacologic therapy, and LRRN4CL (ligand binding and programmed cell death) from a biological standpoint. Our findings could have diagnostic, prognostic, and therapeutic implications for advanced HF patients, and inform the care of the broader HF population.

2.
bioRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352459

ABSTRACT

The established clinical therapy for the treatment of acute myocardial infarction is primary percutaneous coronary intervention (PPCI) to restore blood flow to the ischemic myocardium. PPCI is effective at reperfusing the ischemic myocardium, however the rapid re-introduction of oxygenated blood also can cause ischemia-reperfusion (I/R) injury. Reperfusion injury is the culprit for up to half of the final myocardial damage, but there are no clinical interventions to reduce I/R injury. We previously demonstrated that inhibiting the lactate exporter, monocarboxylate transporter 4 (MCT4), and re-directing pyruvate towards oxidation can blunt isoproterenol-induced hypertrophy. Based on this finding, we hypothesized that the same pathway might be important during I/R. Here, we establish that the pyruvate-lactate metabolic axis plays a critical role in determining myocardial salvage following injury. Post-I/R injury, the mitochondrial pyruvate carrier (MPC), required for pyruvate oxidation, is upregulated in the surviving myocardium following I/R injury. MPC loss in cardiomyocytes caused more cell death with less myocardial salvage, which was associated with an upregulation of MCT4 in the myocardium at risk of injury. We deployed a pharmacological strategy of MCT4 inhibition with a highly selective compound (VB124) at the time of reperfusion. This strategy normalized reactive oxygen species (ROS), mitochondrial membrane potential (Δψ), and Ca 2+ , increased pyruvate entry to TCA cycle, and improved myocardial salvage and functional outcomes following I/R injury. Altogether, our data suggest that normalizing the pyruvate-lactate metabolic axis via MCT4 inhibition is a promising pharmacological strategy to mitigate I/R injury.

3.
Nat Cardiovasc Res ; 2(4): 399-416, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37583573

ABSTRACT

Recovery of cardiac function is the holy grail of heart failure therapy yet is infrequently observed and remains poorly understood. In this study, we performed single-nucleus RNA sequencing from patients with heart failure who recovered left ventricular systolic function after left ventricular assist device implantation, patients who did not recover and non-diseased donors. We identified cell-specific transcriptional signatures of recovery, most prominently in macrophages and fibroblasts. Within these cell types, inflammatory signatures were negative predictors of recovery, and downregulation of RUNX1 was associated with recovery. In silico perturbation of RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of recovery. Cardiac recovery mediated by BET inhibition in mice led to decreased macrophage and fibroblast Runx1 expression and diminished chromatin accessibility within a Runx1 intronic peak and acquisition of human recovery signatures. These findings suggest that cardiac recovery is a unique biological state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.

4.
Circulation ; 147(5): 409-424, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36448446

ABSTRACT

BACKGROUND: Extensive evidence from single-center studies indicates that a subset of patients with chronic advanced heart failure (HF) undergoing left ventricular assist device (LVAD) support show significantly improved heart function and reverse structural remodeling (ie, termed "responders"). Furthermore, we recently published a multicenter prospective study, RESTAGE-HF (Remission from Stage D Heart Failure), demonstrating that LVAD support combined with standard HF medications induced remarkable cardiac structural and functional improvement, leading to high rates of LVAD weaning and excellent long-term outcomes. This intriguing phenomenon provides great translational and clinical promise, although the underlying molecular mechanisms driving this recovery are largely unknown. METHODS: To identify changes in signaling pathways operative in the normal and failing human heart and to molecularly characterize patients who respond favorably to LVAD unloading, we performed global RNA sequencing and phosphopeptide profiling of left ventricular tissue from 93 patients with HF undergoing LVAD implantation (25 responders and 68 nonresponders) and 12 nonfailing donor hearts. Patients were prospectively monitored through echocardiography to characterize their myocardial structure and function and identify responders and nonresponders. RESULTS: These analyses identified 1341 transcripts and 288 phosphopeptides that are differentially regulated in cardiac tissue from nonfailing control samples and patients with HF. In addition, these unbiased molecular profiles identified a unique signature of 29 transcripts and 93 phosphopeptides in patients with HF that distinguished responders after LVAD unloading. Further analyses of these macromolecules highlighted differential regulation in 2 key pathways: cell cycle regulation and extracellular matrix/focal adhesions. CONCLUSIONS: This is the first study to characterize changes in the nonfailing and failing human heart by integrating multiple -omics platforms to identify molecular indices defining patients capable of myocardial recovery. These findings may guide patient selection for advanced HF therapies and identify new HF therapeutic targets.


Subject(s)
Heart Failure , Heart Transplantation , Heart-Assist Devices , Humans , Transcriptome , Prospective Studies , Phosphopeptides/metabolism , Proteomics , Tissue Donors , Heart Failure/genetics , Heart Failure/therapy , Heart Failure/metabolism , Myocardium/metabolism
5.
J Clin Invest ; 132(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35104247

ABSTRACT

Blood vessel abnormalization alters cancer cell metabolism and promotes cancer dissemination and metastasis. However, the biological features of the abnormalized blood vessels that facilitate cancer progression and whether they can be targeted therapeutically have not been fully investigated. Here, we found that an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), is expressed preferentially in abnormalized vessels of advanced colorectal cancers in humans and that its expression correlates negatively with long-term survival. Endothelial cell-specific deletion of Flrt2 in mice selectively pruned abnormalized vessels, resulting in a unique metabolic state termed "oxygen-glucose uncoupling," which suppressed tumor metastasis. Moreover, Flrt2 deletion caused an increase in the number of mature vessels, resulting in a significant increase in the antitumor effects of immune checkpoint blockers. Mechanistically, we found that FLRT2 forms noncanonical interendothelial adhesions that safeguard against oxidative stress through homophilic binding. Together, our results demonstrated the existence of tumor-specific interendothelial adhesions that enable abnormalized vessels to facilitate cancer aggressiveness. Targeting this type of adhesion complex could be a safe and effective therapeutic option to suppress cancer progression.


Subject(s)
Membrane Glycoproteins , Neoplasms , Animals , Endothelial Cells/metabolism , Membrane Glycoproteins/metabolism , Mice , Neovascularization, Pathologic
6.
Circ Heart Fail ; 15(3): e008910, 2022 03.
Article in English | MEDLINE | ID: mdl-34865514

ABSTRACT

BACKGROUND: Extrinsic control of cardiomyocyte metabolism is poorly understood in heart failure (HF). FGF21 (Fibroblast growth factor 21), a hormonal regulator of metabolism produced mainly in the liver and adipose tissue, is a prime candidate for such signaling. METHODS: To investigate this further, we examined blood and tissue obtained from human subjects with end-stage HF with reduced ejection fraction at the time of left ventricular assist device implantation and correlated serum FGF21 levels with cardiac gene expression, immunohistochemistry, and clinical parameters. RESULTS: Circulating FGF21 levels were substantially elevated in HF with reduced ejection fraction, compared with healthy subjects (HF with reduced ejection fraction: 834.4 [95% CI, 628.4-1040.3] pg/mL, n=40; controls: 146.0 [86.3-205.7] pg/mL, n=20, P=1.9×10-5). There was clear FGF21 staining in diseased cardiomyocytes, and circulating FGF21 levels negatively correlated with the expression of cardiac genes involved in ketone metabolism, consistent with cardiac FGF21 signaling. FGF21 gene expression was very low in failing and nonfailing hearts, suggesting extracardiac production of the circulating hormone. Circulating FGF21 levels were correlated with BNP (B-type natriuretic peptide) and total bilirubin, markers of chronic cardiac and hepatic congestion. CONCLUSIONS: Circulating FGF21 levels are elevated in HF with reduced ejection fraction and appear to bind to the heart. The liver is likely the main extracardiac source. This supports a model of hepatic FGF21 communication to diseased cardiomyocytes, defining a potential cardiohepatic signaling circuit in human HF.


Subject(s)
Fibroblast Growth Factors , Heart Failure , Ventricular Dysfunction, Left , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Heart Failure/genetics , Humans , Natriuretic Peptide, Brain/genetics
7.
Nat Commun ; 12(1): 4583, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321484

ABSTRACT

Voltage dependent anion channel 2 (VDAC2) is an outer mitochondrial membrane porin known to play a significant role in apoptosis and calcium signaling. Abnormalities in calcium homeostasis often leads to electrical and contractile dysfunction and can cause dilated cardiomyopathy and heart failure. However, the specific role of VDAC2 in intracellular calcium dynamics and cardiac function is not well understood. To elucidate the role of VDAC2 in calcium homeostasis, we generated a cardiac ventricular myocyte-specific developmental deletion of Vdac2 in mice. Our results indicate that loss of VDAC2 in the myocardium causes severe impairment in excitation-contraction coupling by altering both intracellular and mitochondrial calcium signaling. We also observed adverse cardiac remodeling which progressed to severe cardiomyopathy and death. Reintroduction of VDAC2 in 6-week-old knock-out mice partially rescued the cardiomyopathy phenotype. Activation of VDAC2 by efsevin increased cardiac contractile force in a mouse model of pressure-overload induced heart failure. In conclusion, our findings demonstrate that VDAC2 plays a crucial role in cardiac function by influencing cellular calcium signaling. Through this unique role in cellular calcium dynamics and excitation-contraction coupling VDAC2 emerges as a plausible therapeutic target for heart failure.


Subject(s)
Calcium/metabolism , Cardiomyopathy, Dilated/metabolism , Homeostasis , Voltage-Dependent Anion Channel 2/genetics , Voltage-Dependent Anion Channel 2/metabolism , Animals , Apoptosis , Calcium Signaling , Cardiomyopathy, Dilated/mortality , Heart Failure/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Transcriptome
8.
NPJ Aging Mech Dis ; 7(1): 16, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34050186

ABSTRACT

It is well established that the aging heart progressively remodels towards a senescent phenotype, but alterations of cellular microstructure and their differences to chronic heart failure (HF) associated remodeling remain ill-defined. Here, we show that the transverse tubular system (t-system) and proteins underlying excitation-contraction coupling in cardiomyocytes are characteristically remodeled with age. We shed light on mechanisms of this remodeling and identified similarities and differences to chronic HF. Using left ventricular myocardium from donors and HF patients with ages between 19 and 75 years, we established a library of 3D reconstructions of the t-system as well as ryanodine receptor (RyR) and junctophilin 2 (JPH2) clusters. Aging was characterized by t-system alterations and sarcolemmal dissociation of RyR clusters. This remodeling was less pronounced than in HF and accompanied by major alterations of JPH2 arrangement. Our study indicates that targeting sarcolemmal association of JPH2 might ameliorate age-associated deficiencies of heart function.

9.
Cell Metab ; 33(3): 629-648.e10, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33333007

ABSTRACT

The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.


Subject(s)
Anion Transport Proteins/metabolism , Cardiomegaly/pathology , Heart Failure/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Animals , Anion Transport Proteins/antagonists & inhibitors , Anion Transport Proteins/genetics , Cardiomegaly/chemically induced , Cardiomegaly/complications , Heart Failure/etiology , Heart-Assist Devices , Humans , Lactic Acid/metabolism , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Mitochondrial Membrane Transport Proteins/genetics , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Muscle Proteins/antagonists & inhibitors , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pyruvic Acid/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Ventricular Function, Left/physiology
10.
Circulation ; 142(3): 259-274, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32351122

ABSTRACT

BACKGROUND: Significant improvements in myocardial structure and function have been reported in some patients with advanced heart failure (termed responders [R]) following left ventricular assist device (LVAD)-induced mechanical unloading. This therapeutic strategy may alter myocardial energy metabolism in a manner that reverses the deleterious metabolic adaptations of the failing heart. Specifically, our previous work demonstrated a post-LVAD dissociation of glycolysis and oxidative-phosphorylation characterized by induction of glycolysis without subsequent increase in pyruvate oxidation through the tricarboxylic acid cycle. The underlying mechanisms responsible for this dissociation are not well understood. We hypothesized that the accumulated glycolytic intermediates are channeled into cardioprotective and repair pathways, such as the pentose-phosphate pathway and 1-carbon metabolism, which may mediate myocardial recovery in R. METHODS: We prospectively obtained paired left ventricular apical myocardial tissue from nonfailing donor hearts as well as R and nonresponders at LVAD implantation (pre-LVAD) and transplantation (post-LVAD). We conducted protein expression and metabolite profiling and evaluated mitochondrial structure using electron microscopy. RESULTS: Western blot analysis shows significant increase in rate-limiting enzymes of pentose-phosphate pathway and 1-carbon metabolism in post-LVAD R (post-R) as compared with post-LVAD nonresponders (post-NR). The metabolite levels of these enzyme substrates, such as sedoheptulose-6-phosphate (pentose phosphate pathway) and serine and glycine (1-carbon metabolism) were also decreased in Post-R. Furthermore, post-R had significantly higher reduced nicotinamide adenine dinucleotide phosphate levels, reduced reactive oxygen species levels, improved mitochondrial density, and enhanced glycosylation of the extracellular matrix protein, α-dystroglycan, all consistent with enhanced pentose-phosphate pathway and 1-carbon metabolism that correlated with the observed myocardial recovery. CONCLUSIONS: The recovering heart appears to direct glycolytic metabolites into pentose-phosphate pathway and 1-carbon metabolism, which could contribute to cardioprotection by generating reduced nicotinamide adenine dinucleotide phosphate to enhance biosynthesis and by reducing oxidative stress. These findings provide further insights into mechanisms responsible for the beneficial effect of glycolysis induction during the recovery of failing human hearts after mechanical unloading.


Subject(s)
Glucose/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Comorbidity , Energy Metabolism , Glycolysis , Heart Failure/etiology , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Heart-Assist Devices , Humans , Metabolic Networks and Pathways , Metabolome , Metabolomics/methods , Oxidation-Reduction , Stroke Volume
11.
Circ Heart Fail ; 12(8): e006085, 2019 08.
Article in English | MEDLINE | ID: mdl-31422672

ABSTRACT

BACKGROUND: The coronary vasculature encounters a reduction in pulsatility after implementing durable continuous-flow left ventricular assist device (CF-LVAD) circulatory support. Evidence exists that appropriate pulsatility is required to maintain endothelial cell homeostasis. We hypothesized that coronary artery endothelial function would be impaired after CF-LVAD intervention. METHODS AND RESULTS: Coronary arteries from patients with end-stage heart failure caused by ischemic cardiomyopathy (ICM; n=16) or non-ICM (n=22) cardiomyopathy were isolated from the left ventricular apical core, which was removed for the CF-LVAD implantation. In 11 of these patients, paired coronary arteries were obtained from an adjacent region of myocardium after the CF-LVAD intervention (n=6 ICM, 5 non-ICM). Vascular function was assessed ex vivo using isometric tension procedures in these patients and in 7 nonfailing donor controls. Maximal endothelium-dependent vasorelaxation to BK (bradykinin; 10-6-10-10 M) was blunted (P<0.05) in arteries from patients with ICM compared with non-ICM and donor controls, whereas responses to sodium nitroprusside (10-4-10-9 M) were similar among the groups. Contrary to our hypothesis, vasorelaxation responses to BK and sodium nitroprusside were similar before and 219±37 days after CF-LVAD support. Of these patients, an exploratory subgroup analysis revealed that BK-induced coronary artery vasorelaxation was greater (P<0.05) after (87±6%) versus before (54±14%) CF-LVAD intervention in ICM patients, whereas sodium nitroprusside-evoked responses were similar. CONCLUSIONS: Coronary artery endothelial function is not impaired by durable CF-LVAD support and in ICM patients appears to be improved. Investigating coronary endothelial function using in vivo approaches in a larger patient population is warranted.


Subject(s)
Cardiomyopathies/complications , Coronary Vessels/physiopathology , Endothelium, Vascular/physiopathology , Heart Failure/therapy , Heart-Assist Devices , Myocardial Ischemia/complications , Vasodilation/physiology , Biopsy , Cardiomyopathies/physiopathology , Cardiomyopathies/therapy , Coronary Vessels/pathology , Echocardiography , Female , Follow-Up Studies , Heart Failure/diagnosis , Heart Failure/physiopathology , Humans , Male , Middle Aged , Myocardial Ischemia/physiopathology , Myocardial Ischemia/therapy , Myocardium/pathology
12.
Development ; 144(13): 2392-2401, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28576770

ABSTRACT

The placental labyrinth is the interface for gas and nutrient exchange between the embryo and the mother; hence its proper development is essential for embryogenesis. However, the molecular mechanism underlying development of the placental labyrinth, particularly in terms of its endothelial organization, is not well understood. Here, we determined that fibronectin leucine-rich transmembrane protein 2 (FLRT2), a repulsive ligand of the UNC5 receptor family for neurons, is unexpectedly expressed in endothelial cells specifically in the placental labyrinth. Mice lacking FLRT2 in endothelial cells exhibited embryonic lethality at mid-gestation, with systemic congestion and hypoxia. Although they lacked apparent deformities in the embryonic vasculature and heart, the placental labyrinths of these embryos exhibited aberrant alignment of endothelial cells, which disturbed the feto-maternal circulation. Interestingly, this vascular deformity was related to endothelial repulsion through binding to the UNC5B receptor. Our results suggest that the proper organization of the placental labyrinth depends on coordinated inter-endothelial repulsion, which prevents uncontrolled layering of the endothelium.


Subject(s)
Membrane Glycoproteins/metabolism , Organogenesis , Placenta/embryology , Placenta/metabolism , Signal Transduction , Animals , Cell Survival , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Endothelial Cells/metabolism , Female , Gene Deletion , Hypoxia/pathology , Membrane Glycoproteins/deficiency , Mice, Inbred C57BL , Neovascularization, Physiologic , Netrin Receptors , Placenta/blood supply , Placenta/cytology , Pregnancy , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/metabolism
13.
Circulation ; 135(17): 1632-1645, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28073805

ABSTRACT

BACKGROUND: Cardiac recovery in response to mechanical unloading by left ventricular assist devices (LVADs) has been demonstrated in subgroups of patients with chronic heart failure (HF). Hallmarks of HF are depletion and disorganization of the transverse tubular system (t-system) in cardiomyocytes. Here, we investigated remodeling of the t-system in human end-stage HF and its role in cardiac recovery. METHODS: Left ventricular biopsies were obtained from 5 donors and 26 patients with chronic HF undergoing implantation of LVADs. Three-dimensional confocal microscopy and computational image analysis were applied to assess t-system structure, density, and distance of ryanodine receptor clusters to the sarcolemma, including the t-system. Recovery of cardiac function in response to mechanical unloading was assessed by echocardiography during turndown of the LVAD. RESULTS: The majority of HF myocytes showed remarkable t-system remodeling, particularly sheet-like invaginations of the sarcolemma. Circularity of t-system components was decreased in HF versus controls (0.37±0.01 versus 0.46±0.02; P<0.01), and the volume/length ratio was increased in HF (0.36±0.01 versus 0.25±0.02 µm2; P<0.0001). T-system density was reduced in HF, leading to increased ryanodine receptor-sarcolemma distances (0.96±0.05 versus 0.64±0.1 µm; P<0.01). Low ryanodine receptor-sarcolemma distances at the time of LVAD implantation predicted high post-LVAD left ventricular ejection fractions (P<0.01) and ejection fraction increases during unloading (P<0.01). Ejection fraction in patients with pre-LVAD ryanodine receptor-sarcolemma distances >1 µm did not improve after mechanical unloading. In addition, calcium transients were recorded in field-stimulated isolated human cardiomyocytes and analyzed with respect to local t-system density. Calcium release in HF myocytes was restricted to regions proximal to the sarcolemma. Local calcium upstroke was delayed (23.9±4.9 versus 10.3±1.7 milliseconds; P<0.05) and more asynchronous (18.1±1.5 versus 8.9±2.2 milliseconds; P<0.01) in HF cells with low t-system density versus cells with high t-system density. CONCLUSIONS: The t-system in end-stage human HF presents a characteristic novel phenotype consisting of sheet-like invaginations of the sarcolemma. Our results suggest that the remodeled t-system impairs excitation-contraction coupling and functional recovery during chronic LVAD unloading. An intact t-system at the time of LVAD implantation may constitute a precondition and predictor for functional cardiac recovery after mechanical unloading.


Subject(s)
Excitation Contraction Coupling , Heart Failure/therapy , Heart-Assist Devices , Myocardial Contraction , Myocytes, Cardiac/pathology , Ventricular Function, Left , Ventricular Remodeling , Adult , Aged , Biopsy , Case-Control Studies , Echocardiography , Female , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Humans , Image Processing, Computer-Assisted , Male , Microscopy, Confocal , Middle Aged , Myocytes, Cardiac/metabolism , Prospective Studies , Prosthesis Design , Recovery of Function , Ryanodine Receptor Calcium Release Channel/metabolism , Time Factors , Treatment Outcome
14.
Heart Fail Clin ; 12(3): 449-59, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27371520

ABSTRACT

Adverse myocardial remodeling can be reversed by medical, surgical, and device therapies leading to reduced heart failure (HF) morbidity and mortality and significant improvements in the structure and function of the failing heart. The growing population of HF patients who experience a degree of myocardial improvement should be better studied in terms of long-term outcomes and underlying biology to more clearly define the difference between recovery and remission. These investigations should also be focused in determining whether in chronic HF patients complete myocardial recovery is achievable at a meaningful rate and help us better understand, predict, and manipulate cardiac recovery.


Subject(s)
Heart Failure/physiopathology , Heart Failure/therapy , Cardiac Rehabilitation , Female , Humans , Male , Translational Research, Biomedical , Ventricular Remodeling
15.
JACC Basic Transl Sci ; 1(6): 432-444, 2016 Oct.
Article in English | MEDLINE | ID: mdl-28497127

ABSTRACT

This study sought to investigate the effects of mechanical unloading on myocardial energetics and the metabolic perturbation of heart failure (HF) in an effort to identify potential new therapeutic targets that could enhance the unloading-induced cardiac recovery. The authors prospectively examined paired human myocardial tissue procured from 31 advanced HF patients at left ventricular assist device (LVAD) implant and at heart transplant plus tissue from 11 normal donors. They identified increased post-LVAD glycolytic metabolites without a coordinate increase in early, tricarboxylic acid (TCA) cycle intermediates. The increased pyruvate was not directed toward the mitochondria and the TCA cycle for complete oxidation, but instead, was mainly converted to cytosolic lactate. Increased nucleotide concentrations were present, potentially indicating increased flux through the pentose phosphate pathway. Evaluation of mitochondrial function and structure revealed a lack of post-LVAD improvement in mitochondrial oxidative functional capacity, mitochondrial volume density, and deoxyribonucleic acid content. Finally, post-LVAD unloading, amino acid levels were found to be increased and could represent a compensatory mechanism and an alternative energy source that could fuel the TCA cycle by anaplerosis. In summary, the authors report evidence that LVAD unloading induces glycolysis in concert with pyruvate mitochondrial oxidation mismatch, most likely as a result of persistent mitochondrial dysfunction. These findings suggest that interventions known to improve mitochondrial biogenesis, structure, and function, such as controlled cardiac reloading and conditioning, warrant further investigation to enhance unloading-induced reverse remodeling and cardiac recovery.

16.
J Immunol ; 192(12): 6045-52, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24835390

ABSTRACT

The vascular endothelium responds to infection by destabilizing endothelial cell-cell junctions to allow fluid and cells to pass into peripheral tissues, facilitating clearance of infection and tissue repair. During sepsis, endotoxin and other proinflammatory molecules induce excessive vascular leak, which can cause organ dysfunction, shock, and death. Current therapies for sepsis are limited to antibiotics and supportive care, which are often insufficient to reduce morbidity and prevent mortality. Previous attempts at blocking inflammatory cytokine responses in humans proved ineffective at reducing the pathologies associated with sepsis, highlighting the need for a new therapeutic strategy. The small GTPase ARF6 is activated by a MyD88-ARNO interaction to induce vascular leak through disruption of endothelial adherens junctions. In this study, we show that the MyD88-ARNO-ARF6-signaling axis is responsible for LPS-induced endothelial permeability and is a destabilizing convergence point used by multiple inflammatory cues. We also show that blocking ARF6 with a peptide construct of its N terminus is sufficient to reduce vascular leak and enhance survival during endotoxic shock, without inhibiting the host cytokine response. Our data highlight the therapeutic potential of blocking ARF6 and reducing vascular leak for the treatment of inflammatory conditions, such as endotoxemia.


Subject(s)
ADP-Ribosylation Factors/immunology , Adherens Junctions/immunology , Capillary Permeability/immunology , Endothelial Cells/immunology , Shock, Septic/immunology , Signal Transduction/immunology , ADP-Ribosylation Factor 6 , Adherens Junctions/pathology , Animals , Capillary Permeability/drug effects , Cells, Cultured , Endothelial Cells/pathology , Female , GTPase-Activating Proteins/immunology , Humans , Lipopolysaccharides/toxicity , Male , Mice , Myeloid Differentiation Factor 88/immunology , Shock, Septic/chemically induced , Shock, Septic/pathology , Signal Transduction/drug effects
17.
J Am Soc Nephrol ; 25(2): 239-49, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24115477

ABSTRACT

Netrin-1 regulates cell survival and apoptosis by activation of its receptors, including UNC5B. However, the in vivo role of UNC5B in cell survival during cellular stress and tissue injury is unknown. We investigated the role of UNC5B in cell survival in response to stress using mice heterozygously expressing the UNC5B gene (UNC5B(-/flox)) and mice with targeted homozygous deletion of UNC5B in kidney epithelial cells (UNC5B(-/flox/GGT-cre)). Mice were subjected to two different models of organ injury: ischemia reperfusion injury of the kidney and cisplatin-induced nephrotoxicity. Both mouse models of UNC5B depletion had normal organ function and histology under basal conditions. After AKI, however, UNC5B(-/flox/GGT-cre) mice exhibited significantly worse renal function and damage, increased tubular apoptosis, enhanced p53 activation, and exacerbated inflammation compared with UNC5B(-/flox) and wild-type mice. shRNA-mediated suppression of UNC5B expression in cultured tubular epithelial cells exacerbated cisplatin-induced cell death in a p53-dependent manner and blunted Akt phosphorylation. Inhibition of PI3 kinase similarly exacerbated cisplatin-induced apoptosis; in contrast, overexpression of UNC5B reduced cisplatin-induced apoptosis in these cells. Taken together, these results show that the netrin-1 receptor UNC5B plays a critical role in cell survival and kidney injury through Akt-mediated inactivation of p53 in response to stress.


Subject(s)
Acute Kidney Injury/pathology , Receptors, Cell Surface/physiology , Reperfusion Injury/pathology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Acute Kidney Injury/physiopathology , Animals , Apoptosis , Cells, Cultured , Cisplatin/toxicity , Cytokines/biosynthesis , Cytokines/genetics , Disease Models, Animal , Disease Susceptibility , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Expression Regulation , Genes, p53 , Genotype , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice , Mice, Knockout , Nerve Growth Factors/physiology , Netrin Receptors , Netrin-1 , Organ Specificity , Phosphorylation , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/pharmacology , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Receptors, Cytokine/biosynthesis , Receptors, Cytokine/genetics , Reperfusion Injury/genetics , Reperfusion Injury/physiopathology , Signal Transduction/drug effects , Signal Transduction/physiology , Tumor Suppressor Proteins/physiology
18.
Nat Med ; 15(2): 177-84, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19151728

ABSTRACT

Cerebral cavernous malformation (CCM) is a common vascular dysplasia that affects both systemic and central nervous system blood vessels. Loss of function mutations in the CCM2 gene cause CCM. Here we show that targeted disruption of Ccm2 in mice results in failed lumen formation and early embryonic death through an endothelial cell autonomous mechanism. We show that CCM2 regulates endothelial cytoskeletal architecture, cell-to-cell interactions and lumen formation. Heterozygosity at Ccm2, a genotype equivalent to that in human CCM, results in impaired endothelial barrier function. On the basis of our biochemical studies indicating that loss of CCM2 results in activation of RHOA GTPase, we rescued the cellular phenotype and barrier function in heterozygous mice with simvastatin, a drug known to inhibit Rho GTPases. These data offer the prospect for pharmacological treatment of a human vascular dysplasia with a widely available and safe drug.


Subject(s)
Blood Vessels/physiology , Carrier Proteins/metabolism , Signal Transduction , rho GTP-Binding Proteins/metabolism , Animals , Blood Vessels/cytology , Carrier Proteins/genetics , Heterozygote , Humans , Mice
19.
Development ; 135(4): 659-67, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18223200

ABSTRACT

There is emerging evidence that the canonical neural guidance factor netrin can also direct the growth of blood vessels. We deleted the gene encoding UNC5B, a receptor for the netrin family of guidance molecules, specifically within the embryonic endothelium of mice. The result is a profound structural and functional deficiency in the arterioles of the placental labyrinth, which leads first to flow reversal in the umbilical artery and ultimately to embryonic death. As this is the only detectable site of vascular abnormality in the mutant embryos, and because the phenotype cannot be rescued by a wild-type trophectoderm, we propose that UNC5B-mediated signaling is a specific and autonomous component of fetal-placental angiogenesis. Disruption of UNC5B represents a unique example of a mutation that acts solely within the fetal-placental vasculature and one that faithfully recapitulates the structural and physiological characteristics of clinical uteroplacental insufficiency. This pro-angiogenic, but spatially restricted requirement for UNC5B is not unique to murine development, as the knock-down of the Unc5b ortholog in zebrafish similarly results in the specific and highly penetrant absence of the parachordal vessel, the precursor to the lymphatic system.


Subject(s)
Blood Vessels/embryology , Neovascularization, Physiologic , Receptors, Cell Surface/metabolism , Animals , Arterioles/abnormalities , Arterioles/pathology , Blood Vessels/metabolism , Embryo Loss , Embryo, Mammalian/abnormalities , Embryo, Mammalian/blood supply , Embryo, Mammalian/pathology , Embryo, Nonmammalian/cytology , Endothelium/embryology , Female , Gene Expression Regulation, Developmental , Hypoxia , Mice , Mice, Inbred C57BL , Netrin Receptors , Organ Specificity , Phenotype , Placenta/metabolism , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Regional Blood Flow , Signal Transduction , Umbilical Cord/blood supply , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...