Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Robot ; 9(91): eadj3665, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924424

ABSTRACT

Sense of joint agency (SoJA) is the sense of control experienced by humans when acting with others to bring about changes in the shared environment. SoJA is proposed to arise from the sensorimotor predictive processes underlying action control and monitoring. Because SoJA is a ubiquitous phenomenon occurring when we perform actions with other humans, it is of great interest and importance to understand whether-and under what conditions-SoJA occurs in collaborative tasks with humanoid robots. In this study, using behavioral measures and neural responses measured by electroencephalography (EEG), we aimed to evaluate whether SoJA occurs in joint action with the humanoid robot iCub and whether its emergence is influenced by the perceived intentionality of the robot. Behavioral results show that participants experienced SoJA with the robot partner when it was presented as an intentional agent but not when it was presented as a mechanical artifact. EEG results show that the mechanism that influences the emergence of SoJA in the condition when the robot is presented as an intentional agent is the ability to form similarly accurate predictions about the sensory consequences of our own and others' actions, leading to similar modulatory activity over sensory processing. Together, our results shed light on the joint sensorimotor processing mechanisms underlying the emergence of SoJA in human-robot interaction and underscore the importance of attribution of intentionality to the robot in human-robot collaboration.


Subject(s)
Electroencephalography , Intention , Robotics , Humans , Robotics/instrumentation , Male , Female , Adult , Young Adult , Cooperative Behavior , Psychomotor Performance/physiology
2.
Cortex ; 169: 249-258, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37956508

ABSTRACT

Previous work shows that in some instances artificial agents, such as robots, can elicit higher-order socio-cognitive mechanisms, similar to those elicited by humans. This suggests that these socio-cognitive mechanisms, such as mentalizing processes, originally developed for interaction with other humans, might be flexibly (re-)used, or "hijacked", for approaching this new category of interaction partners (Wykowska, 2020). In this study, we set out to identify neural markers of such flexible reuse of socio-cognitive mechanisms. We focused on fronto-parietal theta synchronization, as it has been proposed to be a substrate of cognitive flexibility in general (Fries, 2005). We analyzed EEG data from two experiments (Bossi et al., 2020; Roselli et al., submitted), in which participants completed a test measuring their individual likelihood to adopt the intentional stance towards robots, the intentional stance (IST) test. Our results show that participants with higher scores on the IST, indicating that they had higher likelihood of adopting the intentional stance towards a robot, had a significantly higher theta synchronization value, relative to participants with lower scores on the IST. These results suggest that long-range synchronization in the theta band might be a marker socio-cognitive process that can be flexibly applied towards non-human agents, such as robots.


Subject(s)
Cognition , Theta Rhythm , Humans , Electroencephalography
SELECTION OF CITATIONS
SEARCH DETAIL