Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(10): 4345-4357, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37791902

ABSTRACT

The emergence of drug-resistant pathogenic microorganisms has become a public health concern, with demand for strategies to suppress their proliferation in healthcare facilities. The present study investigates the physicochemical and antimicrobial properties of carbon dots (CD-MR) derived from the methyl red azo dye. The morphological and structural analyses reveal that such carbon dots present a significant fraction of graphitic nitrogen in their structures, providing a wide emission range. Based on their low cytotoxicity against mammalian cells and tunable photoluminescence, these carbon dots are applied to bioimaging in vitro living cells. The possibility of using CD-MR to generate reactive oxygen species (ROS) is also analyzed, and a high singlet oxygen quantum efficiency is verified. Moreover, the antimicrobial activity of CD-MR is analyzed against pathogenic microorganisms Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans. Kirby-Bauer susceptibility tests show that carbon dots synthesized from methyl red possess antimicrobial activity upon photoexcitation at 532 nm. The growth inhibition of C. neoformans from CD-MR photosensitization is investigated. Our results show that N-doped carbon dots synthesized from methyl red efficiently generate ROS and possess a strong antimicrobial activity against healthcare-relevant pathogens.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Quantum Dots , Animals , Carbon/pharmacology , Carbon/chemistry , Reactive Oxygen Species , Quantum Dots/therapeutic use , Quantum Dots/chemistry , Photochemotherapy/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Azo Compounds/pharmacology , Azo Compounds/therapeutic use , Mammals
2.
Article in English | MEDLINE | ID: mdl-35225759

ABSTRACT

Eight yeast isolates with an affinity to the genus Tremella were obtained from bromeliads from different locations in Brazil. Although the formation of basidia and basidiocarp were not observed, on the basis of the results of sequence analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) region, we suggest that these isolates represent two novel species of the genus Tremella. These yeasts are phylogenetically related to Tremella saccharicola and Tremella globispora. Therefore, we propose Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. as novel yeast species of the order Tremellales (Agaricomycotina, Basidiomycota). Sequence analysis revealed that Tremella ananatis sp. nov. differs by 11 and 28 nucleotide substitutions from Tremella saccharicola in the D1/D2 sequence and ITS region, respectively. Moreover, Tremella lamprococci sp. nov. differs by 15 and 29 nucleotide substitutions from Tremella globispora in the D1/D2 sequence and ITS region, respectively. The holotypes of Tremella ananatis sp. nov. and Tremella lamprococci sp. nov. are CBS 14568T and CBS 14567T, and the MycoBank numbers are MB840480 and MB840481, respectively.


Subject(s)
Basidiomycota , Bromeliaceae/microbiology , Phylogeny , Base Composition , Basidiomycota/classification , Basidiomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...