Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 363(Pt 1): 125056, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374756

ABSTRACT

The widespread and extensive use of pesticides in European crop production to reduce losses from weeds, diseases, and insects may have serious consequences on the ecosystem and human health. This study aimed to identify 20 active substances of high health risk, based on their detection frequency within and across the environmental matrices (soil, crop, water, and sediment) and to identify their associated hazardous effects. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina and included conventional and organic farming systems. In 31% of cases, the detected substances were found at a higher concentration in the soil than in the corresponding crops, 93% of the compounds were fungicides, and the remainder were insecticides. 43% of the substances, 57% of which were insecticides, were detected only in soil. There was a clear relationship between soils and crops in terms of contamination, but not between water and sediment. Portuguese soil (wine grapes) had the highest number of substances (12) with average concentrations (AC) varying between 1 and 162 µg/kg, followed by French (11 substances in wine grapes) (1≤AC≤64 µg/kg) and Spanish soils (9 substances in vegetables) (3≤AC≤59 µg/kg). The crops corresponding to these soils contained a relatively high number of detected substances and several in high average concentrations (AC). The risk quotient was consistently higher for conventional farms than for organic farms. For the soils from conventional farms, 5 active substances (chlorpyrifos, glyphosate, boscalid, difenoconazole, lambda-cyhalothrin, and one metabolite: AMPA) were considered high risk. For water samples, 2 substances (dieldrin and terbuthylazine) found were high risk, and for sediment, there were 3 substances (metalaxyl-M, spiroxamine, and lambda-cyhalothrin). There were 6 substances detected in crops that are suspected to cause human health effects. Uncontaminated soil is a prerequisite for the adoption of sustainable alternatives to pesticides. Efforts are needed to elucidate the unknown effects of mixtures, including biocides and banned compounds in addition to the substances used in agriculture.

2.
Sci Total Environ ; 948: 174671, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39004368

ABSTRACT

The widespread and excessive use of pesticides in modern agricultural practices has caused pesticide contamination of the environment, animals, and humans, with confirmed serious health consequences. This study aimed to identify the 20 most critical substances based on an analysis of detection frequency (DF) and median concentrations (MC) across environmental and biological matrices. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina, each encompassing conventional and organic farming systems. We analysed 209 active substances in a total of 4609 samples. All substances ranked among the 20 most critical were detected in silicon wristbands worn by humans and animals and indoor dust from both farming systems. Five of them were detected in all environmental matrices. Overall, higher values of DF and MC, including in the blood plasma of animals and humans, were recorded in samples of conventional compared to organic farms. The differences between farming systems were greater in the environmental samples and less in animal and human samples. Ten substances were detected in animal blood plasma from conventional farms and eight in animal blood plasma from organic farms. Two of those, detected in both farming systems, are classified as hazardous for mammals (acute). Five substances detected in animal blood plasma from organic farms and seven detected in animal blood plasma from conventional farms are classified as hazardous for mammals (dietary). Three substances detected in human blood plasma are classified as carcinogens. Seven of the substances detected in human blood plasma are classified as endocrine disruptors. Six substances, of which five were detected in human blood plasma, are hazardous for reproduction/development. Efforts are needed to elucidate the unknown effects of mixtures, and it is crucial that such research also considers biocides and banned substances, which constitute a baseline of contamination that adds to the effect of substances used in agriculture.


Subject(s)
Environmental Monitoring , Pesticides , Argentina , Humans , Pesticides/analysis , Animals , Europe , Environmental Monitoring/methods , Ecosystem , Environmental Pollutants/analysis , Environmental Pollutants/blood , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Agriculture
3.
Water Res ; 254: 121419, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38484551

ABSTRACT

Freshwater ecosystems face a particularly high risk of biodiversity loss compared to marine and terrestrial systems. The use of pesticides in agricultural fields is recognized as a relevant stressor for freshwater environments, exerting a negative impact worldwide on the overall status and health of the freshwater communities. In the present work, part of the Horizon 2020 funded SPRINT project, the occurrence of 193 pesticide residues was investigated in 64 small water bodies of distinct typology (creeks, streams, channels, ditches, rivers, lakes, ponds and reservoirs), located in regions with high agricultural activity in 10 European countries and in Argentina. Mixtures of pesticide residues were detected in all water bodies (20, median; 8-40 min-max). Total pesticide levels found ranged between 6.89 and 5860 ng/L, highlighting herbicides as the dominant type of pesticides. Glyphosate was the compound with the highest median concentration followed by 2,4-D and MCPA, and in a lower degree by dimethomorph, fluopicolide, prothioconazole and metolachlor(-S). Argentina was the site with the highest total pesticide concentration in water bodies followed by The Netherlands, Portugal and France. One or more pesticides exceeded the threshold values established in the European Water Framework Directive for surface water in 9 out of 11 case study sites (CSS), and the total pesticide concentration surpassed the reference value of 500 ng/L in 8 CSS. Although only 5 % (bifenthrin, dieldrin, fipronil sulfone, permethrin, and terbutryn) of the individual pesticides denoted high risk (RQ > 1), the ratios estimated for pesticide mixtures suggested potential environmental risk in the aquatic compartment studied.


Subject(s)
Pesticide Residues , Pesticides , Water Pollutants, Chemical , Water , Ecosystem , Argentina , Water Pollutants, Chemical/analysis , Environmental Monitoring , Pesticides/analysis , Rivers/chemistry
4.
Sci Total Environ ; 905: 167797, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37838044

ABSTRACT

Pesticides are widely used as plant protection products (PPPs) in farming systems to preserve crops against pests, weeds, and fungal diseases. Indoor dust can act as a chemical repository revealing occurrence of pesticides in the indoor environment at the time of sampling and the (recent) past. This in turn provides information on the exposure of humans to pesticides in their homes. In the present study, part of the Horizon 2020 funded SPRINT project, the presence of 198 pesticide residues was assessed in 128 indoor dust samples from both conventional and organic farmworker households across Europe, and in Argentina. Mixtures of pesticide residues were found in all dust samples (25-121, min-max; 75, median). Concentrations varied in a wide range (<0.01 ng/g-206 µg/g), with glyphosate and its degradation product AMPA, permethrin, cypermethrin and piperonyl butoxide found in highest levels. Regarding the type of pesticides, insecticides showed significantly higher levels than herbicides and fungicides. Indoor dust samples related to organic farms showed a significantly lower number of residues, total and individual concentrations than those related to conventional farms. Some pesticides found in indoor dust were no longer approved ones (29 %), with acute/chronic hazards to human health (32 %) and with environmental toxicity (21 %).


Subject(s)
Air Pollution, Indoor , Pesticide Residues , Pesticides , Humans , Pesticide Residues/analysis , Environmental Monitoring , Dust/analysis , Farmers , Argentina , Pesticides/analysis , Europe , Air Pollution, Indoor/analysis
5.
Sci Total Environ ; 682: 719-728, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31129551

ABSTRACT

The whitemouth croaker (Micropogonias furnieri) is one of the most commercially important species along the Atlantic coast of South America. Moreover, some of its biological traits (long life span, inshore feeding, high trophic position) make this species a suitable sentinel of coastal pollution. Here, we investigated contamination by multiple legacy and emerging organic pollutants, such as brominated and chlorinated flame retardants, polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), in whitemouth croakers from two estuaries (Guanabara and Sepetiba Bays) located in industrialized and urbanized areas in Rio de Janeiro State, Southeastern Brazil. Furthermore, we assessed how biological and ecological features could explain the observed contamination patterns. Regarding brominated flame retardants, concentrations of polybrominated diphenyl ethers (PBDEs) varied from 7.6 to 879.7 pg g-1 wet weight (w.w.), with high contribution of tetra-, penta-, hexa- and deca-BDEs. The sum of chlorinated flame retardants (dechlorane-related compounds, ΣDRC) ranged from

Subject(s)
Environmental Monitoring , Perciformes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Brazil , Dibenzofurans, Polychlorinated , Dioxins , Flame Retardants , Halogenated Diphenyl Ethers , Hydrocarbons, Chlorinated , Polychlorinated Dibenzodioxins , Polycyclic Compounds
SELECTION OF CITATIONS
SEARCH DETAIL