Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Genet ; 55(11): 1920-1928, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872450

ABSTRACT

Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development.


Subject(s)
Epilepsies, Partial , Mosaicism , Humans , Mouth Mucosa , Mutation , Brain , Epilepsies, Partial/genetics
2.
Sci Rep ; 13(1): 527, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631516

ABSTRACT

Somatic variants are a major cause of human disease, including neurological disorders like focal epilepsies, but can be challenging to study due to their mosaicism in bulk tissue biopsies. Coupling single-cell genotype and transcriptomic data has potential to provide insight into the role somatic variants play in disease etiology, such as by determining what cell types are affected or how the mutations affect gene expression. Here, we asked whether commonly used single-nucleus 3'- or 5'-RNA-sequencing assays can be used to derive single-nucleus genotype data for a priori known variants that are located near to either end of a transcript. To that end, we compared performance of commercially available single-nuclei 3'- and 5'- gene expression kits using resected brain samples from three pediatric patients with focal epilepsy. We quantified the ability to detect genetic variants in single-nucleus datasets depending on distance from the transcript end. Finally, we demonstrated the ability to identify affected cell types in a patient with a RHEB somatic variant causing an epilepsy-associated cortical malformation. Our results demonstrate that single-nuclei 3' or 5'-RNA-sequencing data can be used to identify known somatic variants in single-nuclei when they are expressed within proximity to a transcript end.


Subject(s)
Epilepsies, Partial , Epilepsy , Gene Expression Profiling , Solitary Nucleus , Child , Humans , Epilepsies, Partial/genetics , Epilepsies, Partial/pathology , Epilepsy/genetics , Epilepsy/pathology , Mutation , Neurons/pathology , Solitary Nucleus/metabolism , Transcriptome , Gene Expression Profiling/methods
3.
Acta Neuropathol Commun ; 10(1): 168, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411471

ABSTRACT

Rasmussen encephalitis (RE) is a rare childhood neurological disease characterized by progressive unilateral loss of function, hemispheric atrophy and drug-resistant epilepsy. Affected brain tissue shows signs of infiltrating cytotoxic T-cells, microglial activation, and neuronal death, implicating an inflammatory disease process. Recent studies have identified molecular correlates of inflammation in RE, but cell-type-specific mechanisms remain unclear. We used single-nucleus RNA-sequencing (snRNA-seq) to assess gene expression across multiple cell types in brain tissue resected from two children with RE. We found transcriptionally distinct microglial populations enriched in RE compared to two age-matched individuals with unaffected brain tissue and two individuals with Type I focal cortical dysplasia (FCD). Specifically, microglia in RE tissues demonstrated increased expression of genes associated with cytokine signaling, interferon-mediated pathways, and T-cell activation. We extended these findings using spatial proteomic analysis of tissue from four surgical resections to examine expression profiles of microglia within their pathological context. Microglia that were spatially aggregated into nodules had increased expression of dynamic immune regulatory markers (PD-L1, CD14, CD11c), T-cell activation markers (CD40, CD80) and were physically located near distinct CD4+ and CD8+ lymphocyte populations. These findings help elucidate the complex immune microenvironment of RE.


Subject(s)
Encephalitis , Microglia , Child , Humans , Microglia/pathology , Proteomics , Encephalitis/genetics , Encephalitis/complications , Inflammation/metabolism
4.
J Pediatr Surg ; 57(7): 1382-1390, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34657737

ABSTRACT

INTRODUCTION: Necrotizing enterocolitis (NEC) remains a significant surgical emergency in neonates. We have demonstrated the efficacy of Lactobacillus reuteri (Lr) in protecting against experimental NEC when administered as a biofilm by incubation with maltose loaded dextranomer microspheres. Lr possesses antimicrobial and anti-inflammatory properties. We developed mutant strains of Lr to examine the importance of its antimicrobial and anti-inflammatory properties in protecting the intestines from NEC. METHODS: Premature rat pups were exposed to hypoxia/hypothermia/hypertonic feeds to induce NEC. To examine the importance of antimicrobial reuterin and anti-inflammatory histamine, pups received either native or mutant forms of Lr, in either its planktonic or biofilm states, prior to induction of NEC. Intestinal histology was examined upon sacrifice. RESULTS: Compared to no treatment, administration of a single dose of Lr in its biofilm state significantly decreased the incidence of NEC (67% vs. 18%, p < 0.0001), whereas Lr in its planktonic state had no significant effect. Administration of reuterin-deficient or histamine-deficient forms of Lr, in either planktonic or biofilm states, resulted in significant loss of efficacy. CONCLUSION: Antimicrobial and anti-inflammatory effects of Lr contribute to its beneficial effects against NEC. This suggests that both infectious and inflammatory components contribute to the etiology of NEC.


Subject(s)
Enterocolitis, Necrotizing , Infant, Newborn, Diseases , Limosilactobacillus reuteri , Probiotics , Animals , Animals, Newborn , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents , Biofilms , Disease Models, Animal , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/prevention & control , Histamine , Humans , Infant, Newborn , Probiotics/pharmacology , Probiotics/therapeutic use , Rats
5.
J Invest Surg ; 33(10): 887-895, 2020 Dec.
Article in English | MEDLINE | ID: mdl-30892111

ABSTRACT

Background: Clostridium difficile infection is the most common cause of antimicrobial-associated diarrhea. Our aim was to introduce a novel and efficient clinical sickness score (CSS), and to define a detailed histologic injury score (HIS) in a murine model of C. difficile colitis. Methods: Mice received an antibiotic cocktail (kanamycin, gentamicin, colistin, metronidazole, and vancomycin) for 96 h. After 48 h, mice received an intraperitoneal injection of clindamycin, followed by oral C. difficile (1.5 × 107 CFU). Signs of sickness were scored using a novel CSS (range 0-12) with scores ≥6 consistent with C. difficile colitis. Intestinal tissue was analyzed utilizing an adapted HIS (range 0-9) with scores ≥4 consistent with C. difficile colitis. Stool was analyzed for C. difficile, and survival evaluated. Results: No control mice showed signs of sickness, whereas 23% of mice receiving antibiotics alone and 65% of mice exposed to antibiotics and subsequently C. difficile demonstrated signs of sickness (p = 0.0134). No control mice had histologic injury, whereas 8% of mice receiving antibiotics alone and 75% of mice exposed to antibiotics followed by C. difficile had evidence of histologic injury (p = 0.0001). Mice exposed to C. difficile lost more weight, although not significant (p = 0.070). Mice that received C. difficile had decreased survival compared to control mice and mice receiving antibiotics only (p = 0.03). Conclusions: We have developed a novel clinical scoring system, and detailed histological grading system, that enables the objective evaluation of a murine C. difficile colitis model. This model allows the study of this disease in a host that demonstrates clinical and histologic signs comparable to human C. difficile infection. This will allow for improved study of therapeutics for this disease in the future.


Subject(s)
Clostridioides difficile , Clostridium Infections , Colitis , Enterocolitis, Pseudomembranous , Animals , Anti-Bacterial Agents/therapeutic use , Clostridium Infections/drug therapy , Colitis/chemically induced , Colitis/drug therapy , Diarrhea , Disease Models, Animal , Enterocolitis, Pseudomembranous/drug therapy , Humans , Mice
6.
Am J Physiol Gastrointest Liver Physiol ; 315(3): G408-G419, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29848024

ABSTRACT

One significant drawback of current probiotic therapy for the prevention of necrotizing enterocolitis (NEC) is the need for at least daily administration because of poor probiotic persistence after enteral administration, increasing the risk of the probiotic bacteria causing bacteremia or sepsis if the intestines are already compromised. We previously showed that the effectiveness of Lactobacillus reuteri ( Lr) in preventing NEC is enhanced when Lr is grown as a biofilm on the surface of dextranomer microspheres (DM). Here we sought to test the efficacy of Lr administration by manipulating the Lr biofilm state with the addition of biofilm-promoting substances (sucrose and maltose) to DM or by mutating the Lr gtfW gene (encoding an enzyme central to biofilm production). Using an animal model of NEC, we determined that Lr adhered to sucrose- or maltose-loaded DM significantly reduced histologic injury, improved host survival, decreased intestinal permeability, reduced intestinal inflammation, and altered the gut microbiome compared with Lr adhered to unloaded DM. These effects were abolished when DM or GtfW were absent from the Lr inoculum. This demonstrates that a single dose of Lr in its biofilm state decreases NEC incidence. Importantly, preloading DM with sucrose or maltose further enhances Lr protection against NEC in a GtfW-dependent fashion, demonstrating the tunability of the approach and the potential to use other cargos to enhance future probiotic formulations. NEW & NOTEWORTHY Previous clinical trials of probiotics to prevent necrotizing enterocolitis have had variable results. In these studies, probiotics were delivered in their planktonic, free-living form. We have developed a novel probiotic delivery system in which Lactobacillus reuteri (Lr) is delivered in its biofilm state. In a model of experimental necrotizing enterocolitis, this formulation significantly reduces intestinal inflammation and permeability, improves survival, and preserves the natural gut microflora compared with the administration of Lr in its free-living form.


Subject(s)
Drug Delivery Systems/methods , Enterocolitis, Necrotizing , Inflammation , Intestines , Limosilactobacillus reuteri/physiology , Probiotics/pharmacology , Animals , Animals, Newborn , Biofilms/growth & development , Dextrans/pharmacology , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/prevention & control , Inflammation/drug therapy , Inflammation/microbiology , Intestines/drug effects , Intestines/microbiology , Intestines/physiopathology , Microspheres , Rats , Rats, Sprague-Dawley
7.
Front Microbiol ; 8: 489, 2017.
Article in English | MEDLINE | ID: mdl-28396655

ABSTRACT

As with all orally consumed probiotics, the Gram-positive bacterium Lactobacillus reuteri encounters numerous challenges as it transits through the gastrointestinal tract of the host, including low pH, effectors of the host immune system, as well as competition with commensal and pathogenic bacteria, all of which can greatly reduce the availability of live bacteria for therapeutic purposes. Recently we showed that L. reuteri, when adhered in the form of a biofilm to a semi-permeable biocompatible dextranomer microsphere, reduces the incidence of necrotizing enterocolitis by 50% in a well-defined animal model following delivery of a single prophylactic dose. Herein, using the same semi-permeable microspheres, we showed that providing compounds beneficial to L. reuteri as diffusible cargo within the microsphere lumen resulted in further advantageous effects including glucosyltransferase-dependent bacterial adherence to the microsphere surface, resistance of bound bacteria against acidic conditions, enhanced adherence of L. reuteri to human intestinal epithelial cells in vitro, and facilitated production of the antimicrobial compound reuterin and the anti-inflammatory molecule histamine. These data support continued development of this novel probiotic formulation as an adaptable and effective means for targeted delivery of cargo beneficial to the probiotic bacterium.

8.
J Pediatr Surg ; 51(6): 936-41, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27032609

ABSTRACT

BACKGROUND/PURPOSE: Probiotics reduce the incidence of necrotizing enterocolitis (NEC) albeit only when administered at high frequency (at least daily). We have developed a novel probiotic delivery system in which probiotics are grown as a biofilm on microspheres, allowing enhanced efficacy with only a single treatment. METHODS: Neonatal rats were subjected to experimental NEC. Pups received a single enteral dose of: (1) vehicle only, (2) unloaded microspheres, (3) MRS (broth)-loaded microspheres, (4) Lactobacillus reuteri, (5) L. reuteri grown on unloaded microspheres, or (6) L. reuteri grown on MRS-loaded microspheres. Intestinal injury was graded histologically and intestinal permeability determined by serum levels of enterally administered fluorescein isothiocyanate-labeled dextran. RESULTS: 69% of untreated pups developed NEC, whereas 32% of pups treated with L. reuteri grown as a biofilm on unloaded microspheres (p=0.009) and 33% of pups treated with L. reuteri grown as a biofilm on MRS-loaded microspheres (p=0.005) developed NEC. No other group had a significant reduction in NEC. Furthermore, pups treated with L. reuteri grown as a biofilm had significantly reduced intestinal permeability. CONCLUSIONS: A single dose of Lactobacillus biofilm grown on biocompatible microspheres significantly reduces NEC incidence and severity. This novel probiotic delivery system may be beneficial in the prevention of NEC in the future.


Subject(s)
Biofilms , Enterocolitis, Necrotizing/prevention & control , Limosilactobacillus reuteri , Probiotics/administration & dosage , Animals , Animals, Newborn , Disease Models, Animal , Drug Delivery Systems , Intestines/pathology , Microspheres , Rats , Rats, Sprague-Dawley
9.
Extremophiles ; 13(3): 447-59, 2009 May.
Article in English | MEDLINE | ID: mdl-19247786

ABSTRACT

A coordinated study of water chemistry, sediment mineralogy, and sediment microbial community was conducted on four >73 degrees C springs in the northwestern Great Basin. Despite generally similar chemistry and mineralogy, springs with short residence time (approximately 5-20 min) were rich in reduced chemistry, whereas springs with long residence time (>1 day) accumulated oxygen and oxidized nitrogen species. The presence of oxygen suggested that aerobic metabolisms prevail in the water and surface sediment. However, Gibbs free energy calculations using empirical chemistry data suggested that several inorganic electron donors were similarly favorable. Analysis of 298 bacterial 16S rDNAs identified 36 species-level phylotypes, 14 of which failed to affiliate with cultivated phyla. Highly represented phylotypes included Thermus, Thermotoga, a member of candidate phylum OP1, and two deeply branching Chloroflexi. The 276 archaeal 16S rDNAs represented 28 phylotypes, most of which were Crenarchaeota unrelated to the Thermoprotei. The most abundant archaeal phylotype was closely related to "Candidatus Nitrosocaldus yellowstonii", suggesting a role for ammonia oxidation in primary production; however, few other phylotypes could be linked with energy calculations because phylotypes were either related to chemoorganotrophs or were unrelated to known organisms.


Subject(s)
Geologic Sediments/microbiology , Water Microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Thermodynamics , United States , X-Ray Diffraction
10.
Microb Ecol ; 57(2): 307-20, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18758846

ABSTRACT

Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.


Subject(s)
Bacteria/genetics , Desert Climate , Seasons , Water Microbiology , Bacteria/classification , Bacteria/isolation & purification , California , Colony Count, Microbial , DNA, Bacterial/genetics , Ecosystem , Gene Library , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Phylogeny , Plankton/classification , Plankton/genetics , Plankton/isolation & purification , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...