Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 312: 123589, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32498011

ABSTRACT

This paper compares a semi-batch operation and a conventional one of an alkaline oxidative pretreatment of wheat straw carried out in a stirred tank reactor. For the pretreatment, different concentrations of biomass (6% up to 12% w/v) and two different particle sizes (mesh #40-60 and #>60) were experimented. The performance of processes was evaluated through the analysis of lignocellulosic composition of the biomass, and the enzymatic hydrolysis of pretreated biomass using the Cellic® CTec2 enzyme complex by Novozymes®. The process time of semi-batch operation is significantly lower than the batch one and enables a higher load of biomass, showing a delignification yield between 55 and 60%. In the first 5 h of reaction time, the enzymatic hydrolysis experiments reached their maximum yields of 72 and 66% according to reducing sugars conversion when using the mesh #>60 mesh and #40-60, respectively.


Subject(s)
Motor Vehicles , Triticum , Biomass , Hydrolysis , Oxidative Stress
2.
Bioresour Technol ; 241: 508-516, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28600944

ABSTRACT

This work concerns the investigation of the sequential production of lactic acid (LA) and biogas from food waste (FW). LA was produced from FW using a Streptococcus sp. strain via simultaneous saccharification and fermentation (SSF) and separate enzymatic hydrolysis and fermentation (SHF). Via SHF a yield of 0.33gLA/gFW (productivity 3.38gLA/L·h) and via SSF 0.29gLA/gFW (productivity 2.08gLA/L·h) was obtained. Fermentation residues and FW underwent anaerobic digestion (3wt% TS). Biogas yields were 0.71, 0.74 and 0.90Nm3/kgVS for FW and residues from SSF and SHF respectively. The innovation of the approach is considering the conversion of FW into two different products through a biorefinery concept, therefore making economically feasible LA production and valorising its fermentative residues. Finally, a mass balance of three different outlines with the aim to assess the amount of LA and biogas that may be generated within different scenarios is presented.


Subject(s)
Biofuels , Food , Lactic Acid , Fermentation , Hydrolysis , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL
...