Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 200: 116096, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340372

ABSTRACT

Coastal sprawl is among the main drivers of global degradation of shallow marine ecosystems. Among artificial substrates, quarry rock can have faster recruitment of benthic organisms compared to traditional concrete, which is more versatile for construction. However, the factors driving these differences are poorly understood. In this context, this study was designed to compare the intertidal and subtidal benthic and epibenthic assemblages on concrete and artificial basalt boulders in six locations of Madeira Island (northeastern Atlantic, Portugal). To assess the size of the habitat, the shorelines in the study area were quantified using satellite images, resulting in >34 % of the south coast of Madeira being artificial. Benthic assemblages differed primarily between locations and secondarily substrates. Generally, assemblages differed between substrates in the subtidal, with lower biomass and abundance in concrete than basalt. We conclude that these differences are not related to chemical effects (e.g., heavy metals) but instead to a higher detachment rate of calcareous biocrusts from concrete, as surface abrasion is faster in concrete than basalt. Consequently, surface integrity emerges as a factor of ecological significance in coastal constructions. This study advances knowledge on the impact and ecology of artificial shorelines, providing a baseline for future research towards ecological criteria for coastal protection and management.


Subject(s)
Ecosystem , Silicates , Biomass , Portugal
2.
Mar Pollut Bull ; 185(Pt B): 114346, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36413932

ABSTRACT

Marinas are hot spots of non-indigenous marine species (NIS). Introductions of NIS, regardless of their actual or potential impacts, can be considered as a biocontamination of the ecosystem. To characterize the biocontamination status of a marina it is important to know which habitats and major taxa can provide the most useful information. To address this issue, we analyze the associated macrofaunal community associated to soft substrate (sediment; SS) and artificial hard substrate (lateral surface of pontoons; AHS) of six marinas from Southern Spain. 9 NIS were found, including 8 crustaceans (7 peracarids) and 1 polychaete; 8 NIS were found on AHS and 4 in sediments. Indeed, site-specific BioContamination Index (SBCI) showed higher values in AHS than SS. Our results indicate peracarids in AHS should be the primary target for assessing the level of biocontamination in marinas. This may help scientists and environmental managers to stablish strategies for monitoring marine bioinvasions.


Subject(s)
Ecosystem , Spain
3.
J Environ Manage ; 286: 112237, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33676130

ABSTRACT

The importance of marinas as infrastructures for recreational boating is increasing substantially. However, information on their soft-bottom benthic communities, a key tool for managing programmes, is still scarce. We combined environment features with macro- and meiofaunal soft-bottom community information for assessing the ecological status of marinas with an integrative approach. To address this issue, we focused on eight marinas of the Southern Iberian Peninsula. Macro- and meiofauna data revealed high benthic heterogeneity at a spatial scale. The environmental variables which correlated best with macrofauna were mainly phosphorus, granulometry, and total organic carbon, and secondarily important variables were faecal coliforms, the biocide Irgarol, and heavy metals; total hydrocarbon concentration was also significant for meiofauna. Annelida was the dominant phylum in terms of number of species (37%) and abundance (66%) and were better descriptors of the environmental conditions than Arthropoda and Mollusca. Although identification to the species level is desirable and mandatory for assessing biological pollution, significant differences among marinas and correlations between fauna and abiotic variables were already detected at the level of family and order. This implies that biota assessment at higher levels may still be useful in monitoring programmes limited by time and budget constraints. The major novelty of this study lies in the development of an integrative assessment method based on the following selected ecological indicators: Marinas Environmental Pollution Index (MEPI), Biocontamination Index (BCI), macrofaunal biotic indices (AMBI, M-AMBI, BENTIX, MEDOCC and BENFES), macrofaunal taxa richness and Shannon-Wiener's diversity, and nematode:copepod index. This approach was able to discriminate marinas of the Southern Iberian Peninsula based on their ecological status, which ranged from poor to good. The method can be useful to design standards for assigning "sustainable quality seals" to those marinas with better values of ecological indicators.


Subject(s)
Ecosystem , Metals, Heavy , Animals , Biodiversity , Biota , Environmental Monitoring , Invertebrates , Metals, Heavy/analysis
4.
Sci Total Environ ; 762: 144169, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33360466

ABSTRACT

Despite the growing interest in recreational boating and the increasing number of marinas along the world's coastlines, environmental knowledge of these ecosystems is still very scarce. Detailed data of pollutants in marinas are necessary to provide a global approach of environmental risks in the context of international management strategies. In the present study, a set of 64 variables (30 in seawater and 34 in sediments) were measured to compare marinas from the Southern Iberian Peninsula (SIP). Uni and multivariate analyses showed significant differences among marinas, evidencing the importance of management on a local scale. The most relevant variables determining these differences were turbidity and the biocide Irgarol 1051 in seawater, and granulometry, hydrocarbons and faecal coliforms in sediment. The use of normalization techniques with Al or Fe, and the suitability of different methodologies to measure Total Organic Matter in marinas were also discussed. Additionally, we perform a comprehensive literature review of worldwide marina stressors and develop a simple and straightforward method for assessing environmental quality. The method was tested using SIP marinas and was based on the comparison of 15 selected sediment stressors with background values, concentrations of worldwide sediment quality guidelines (SQGs), and reference conditions/security thresholds established by the programme of coastal waters in port areas (ROM 5.1). A global score was assigned using a new proposed index, Marinas Environmental Pollution Index (MEPI), ranging from 0 to 150 points according to the environmental quality (<90: bad, 90-120: moderate, >120: good). MEPI of marinas from SIP ranged from 60 to 110 points indicating bad or moderate levels of pollution. Environmental quality is one of the decisive factors for awarding eco-labels or eco-certifications, such as Blue Flags in marinas. Therefore, pollution baseline information and environmental tools are mandatory for correct assignation of these awards and necessary for assessing the efficiency of management actions.

5.
Mar Environ Res ; 141: 44-52, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30093236

ABSTRACT

There is an increasing concern about the ecosystem consequences of altering macroalgal assemblages. Many macrophytes are foundation species in coastal habitats, supporting much of the biodiversity of these ecosystems by providing essential resources such as food and habitat. The addition of invasive species strongly contributes to habitat modification, but the bottom-up impacts of non-native macroalgae on higher trophic levels remains difficult to predict. The main aim of this study was to evaluate the effects of the invasive macroalga Asparagopsis taxiformis on biodiversity by comparing the mobile macrofauna inhabiting this species to the dominant native species Halopteris scoparia. This is the first comprehensive study of the possible effects of this widespread invasive species on higher trophic levels. A hierarchical sampling design with two different spatial scales was conducted to explore the consistency of the patterns observed. Fifty-nine species belonging to superorder Peracarida were found, accounting 90% of all organisms. A. taxiformis hosted an impoverished epifaunal assemblage in comparison to that associated with the native seaweed, showing significantly lower values of diversity, abundance and number of epifaunal species across study locations. The structure of the associated macrofauna (both in terms of species composition, variability among samples and relative abundance of the species) was also different. Our results highlighted the strong influence of A. taxiformis in the resident community, with differences among the two macroalgae in all the parameters considered. Finally, our results also reflect a biotic homogenization of the epifaunal assemblages associated to A. taxiformis, a scarcely explored consequence of invasive processes in marine environments. Future studies exploring the cascading effects of the observed changes in the epifaunal assemblages would be necessary in order to estimate system responses to macroalgal invasions.


Subject(s)
Biodiversity , Rhodophyta , Seaweed , Ecosystem , Introduced Species , Mediterranean Sea , Population Dynamics
6.
Sci Rep ; 8(1): 9193, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29907816

ABSTRACT

Dark marine habitats are often characterized by a food-limited condition. Peculiar dark habitats include marine caves, characterized by the absence of light and limited water flow, which lead to reduced fluxes of organic matter for cave-dwelling organisms. We investigated whether the most abundant and common cave-dwelling fish Apogon imberbis has the potential to play the role of trophic vector in Mediterranean marine caves. We first analysed stomach contents to check whether repletion changes according to a nycthemeral cycle. We then identified the prey items, to see whether they belong to species associated with cave habitats or not. Finally, we assessed whether A. imberbis moves outside marine caves at night to feed, by collecting visual census data on A. imberbis density both inside and outside caves, by day and by night. The stomach repletion of individuals sampled early in the morning was significantly higher than later in the day. Most prey were typical of habitats other than caves. A. imberbis was on average more abundant within caves during the day and outside during the night. Our study supports the hypothesis regarding the crucial trophic role of A. imberbis in connecting Mediterranean marine caves with external habitats.


Subject(s)
Aquatic Organisms/physiology , Caves , Feeding Behavior/physiology , Fishes/physiology , Food Chain , Animals
7.
Mar Environ Res ; 129: 133-146, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28506598

ABSTRACT

The processes and patterns seen in coastal benthic communities can be strongly influenced by the overlying pelagic environmental conditions. Integrating long-term biological and environmental data (both benthic and pelagic) can give insight into the specific relationships between key benthic functional groups and natural temporal changes in the marine environment. The identity and abundance of amphipod species found at Station L4 (Western English Channel) were tracked for 7 years (2008-2014), whilst simultaneously, annual changes in phytoplankton biomass, water temperature, salinity and chlorophyll a concentration were also characterized. The main species were persistent and showed little variability along the study period. Overall, however, there were significant changes in the structure of the whole community between sampling times, highlighting the importance of less numerically-dominant species in driving temporal variability. Surprisingly, the current study did not detect a significant influence of the phytoplankton biomass on benthic amphipod dynamics. On the other hand, there was a clear and constant correlation between bottom water temperatures and amphipod abundance. This pattern is different from that observed in other detritivorous species at L4, highlighting the complexity of benthic-pelagic coupling and the high variability of the response to pelagic conditions among different groups. As a result of the biogeographic position of the Western English Channel, the key role of amphipods in benthic communities, the influence of the temperature in their populations dynamics, as well as the solid baseline provided here and in previous studies, the monitoring of long-term amphipod dynamics in the English Channel could be a valuable tool to evaluate the biological effect of climate change over marine benthic communities.


Subject(s)
Amphipoda/physiology , Ecosystem , Environmental Monitoring , Animals , Chlorophyll/analysis , Chlorophyll A , Climate Change , England , Geography , Geologic Sediments , Phytoplankton , Population Dynamics , Temperature
8.
Mar Pollut Bull ; 94(1-2): 235-40, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25817311

ABSTRACT

Light pollution from coastal urban development is a widespread and increasing threat to biodiversity. Many amphipod species migrate between the benthos and the pelagic environment and light seems is a main ecological factor which regulates migration. We explore the effect of artificial lighting on amphipod assemblages using two kind of lights, LED and halogen, and control traps in shallow waters of the Great Barrier Reef. Both types of artificial light traps showed a significantly higher abundance of individuals for all species in comparison to control traps. LED lights showed a stronger effect over the amphipod assemblages, with these traps collecting a higher number of individuals and differing species composition, with some species showing a specific attraction to LED light. As emergent amphipods are a key ecological group in the shallow water environment, the impact of artificial light can affect the broader functioning of the ecosystem.


Subject(s)
Amphipoda/physiology , Ecosystem , Environmental Monitoring , Light , Animals , Biodiversity , Environment , Environmental Pollution/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...