Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732093

ABSTRACT

The chromatin organization and its dynamic remodeling determine its accessibility and sensitivity to DNA damage oxidative stress, the main source of endogenous DNA damage. We studied the role of the VRK1 chromatin kinase in the response to oxidative stress. which alters the nuclear pattern of histone epigenetic modifications and phosphoproteome pathways. The early effect of oxidative stress on chromatin was studied by determining the levels of 8-oxoG lesions and the alteration of the epigenetic modification of histones. Oxidative stress caused an accumulation of 8-oxoG DNA lesions that were increased by VRK1 depletion, causing a significant accumulation of DNA strand breaks detected by labeling free 3'-DNA ends. In addition, oxidative stress altered the pattern of chromatin epigenetic marks and the nuclear phosphoproteome pathways that were impaired by VRK1 depletion. Oxidative stress induced the acetylation of H4K16ac and H3K9 and the loss of H3K4me3. The depletion of VRK1 altered all these modifications induced by oxidative stress and resulted in losses of H4K16ac and H3K9ac and increases in the H3K9me3 and H3K4me3 levels. All these changes were induced by the oxidative stress in the epigenetic pattern of histones and impaired by VRK1 depletion, indicating that VRK1 plays a major role in the functional reorganization of chromatin in the response to oxidative stress. The analysis of the nuclear phosphoproteome in response to oxidative stress detected an enrichment of the phosphorylated proteins associated with the chromosome organization and chromatin remodeling pathways, which were significantly decreased by VRK1 depletion. VRK1 depletion alters the histone epigenetic pattern and nuclear phosphoproteome pathways in response to oxidative stress. The enzymes performing post-translational epigenetic modifications are potential targets in synthetic lethality strategies for cancer therapies.


Subject(s)
Epigenesis, Genetic , Histones , Oxidative Stress , Protein Serine-Threonine Kinases , Humans , Histones/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proteome/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , DNA Damage , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Cell Line, Tumor , Acetylation , Protein Processing, Post-Translational
2.
Chem Biol Interact ; 391: 110908, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38367682

ABSTRACT

Dynamic chromatin remodeling requires regulatory mechanisms for its adaptation to different nuclear function, which are likely to be mediated by signaling proteins. In this context, VRK1 is a nuclear Ser-Thr kinase that regulates pathways associated with transcription, replication, recombination, and DNA repair. Therefore, VRK1 is a potential regulatory, or coordinator, molecule in these processes. In this work we studied the effect that VRK1 depletion has on the basal nuclear and chromatin phosphoproteome, and their associated pathways. VRK1 depletion caused an alteration in the pattern of the nuclear phosphoproteome, which is mainly associated with nucleoproteins, ribonucleoproteins, RNA splicing and processing. Next, it was determined the changes in proteins associated with DNA damage that was induced by doxorubicin treatment. Doxorubicin alters the nuclear phosphoproteome affecting proteins implicated in DDR, including DSB repair proteins NBN and 53BP1, cellular response to stress and chromatin organization proteins. In VRK1-depleted cells, the effect of doxorubicin on protein phosphorylation was reverted to basal levels. The nuclear phosphoproteome patterns induced by doxorubicin are altered by VRK1 depletion, and is enriched in histone modification proteins and chromatin associated proteins. These results indicate that VRK1 plays a major role in processes requiring chromatin remodeling in its adaptation to different biological contexts.


Subject(s)
Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Chromatin , Phosphorylation , DNA Damage , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , DNA Repair , Doxorubicin/pharmacology
3.
Redox Biol ; 64: 102756, 2023 08.
Article in English | MEDLINE | ID: mdl-37285743

ABSTRACT

Cysteine residues can undergo multiple posttranslational modifications with diverse functional consequences, potentially behaving as tunable sensors. The intermediate filament protein vimentin has important implications in pathophysiology, including cancer progression, infection, and fibrosis, and maintains a close interplay with other cytoskeletal structures, such as actin filaments and microtubules. We previously showed that the single vimentin cysteine, C328, is a key target for oxidants and electrophiles. Here, we demonstrate that structurally diverse cysteine-reactive agents, including electrophilic mediators, oxidants and drug-related compounds, disrupt the vimentin network eliciting morphologically distinct reorganizations. As most of these agents display broad reactivity, we pinpointed the importance of C328 by confirming that local perturbations introduced through mutagenesis provoke structure-dependent vimentin rearrangements. Thus, GFP-vimentin wild type (wt) forms squiggles and short filaments in vimentin-deficient cells, the C328F, C328W, and C328H mutants generate diverse filamentous assemblies, and the C328A and C328D constructs fail to elongate yielding dots. Remarkably, vimentin C328H structures resemble the wt, but are strongly resistant to electrophile-elicited disruption. Therefore, the C328H mutant allows elucidating whether cysteine-dependent vimentin reorganization influences other cellular responses to reactive agents. Electrophiles such as 1,4-dinitro-1H-imidazole and 4-hydroxynonenal induce robust actin stress fibers in cells expressing vimentin wt. Strikingly, under these conditions, vimentin C328H expression blunts electrophile-elicited stress fiber formation, apparently acting upstream of RhoA. Analysis of additional vimentin C328 mutants shows that electrophile-sensitive and assembly-defective vimentin variants permit induction of stress fibers by reactive species, whereas electrophile-resistant filamentous vimentin structures prevent it. Together, our results suggest that vimentin acts as a break for actin stress fibers formation, which would be released by C328-aided disruption, thus allowing full actin remodeling in response to oxidants and electrophiles. These observations postulate C328 as a "sensor" transducing structurally diverse modifications into fine-tuned vimentin network rearrangements, and a gatekeeper for certain electrophiles in the interplay with actin.


Subject(s)
Actins , Intermediate Filaments , Intermediate Filaments/chemistry , Actins/genetics , Actins/chemistry , Vimentin/genetics , Vimentin/chemistry , Cysteine/metabolism , Oxidants/metabolism
4.
Epigenetics Chromatin ; 16(1): 18, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179361

ABSTRACT

BACKGROUND: Dynamic chromatin remodeling is associated with changes in the epigenetic pattern of histone acetylations and methylations required for processes based on dynamic chromatin remodeling and implicated in different nuclear functions. These histone epigenetic modifications need to be coordinated, a role that may be mediated by chromatin kinases such as VRK1, which phosphorylates histones H3 and H2A. METHODS: The effect of VRK1 depletion and VRK1 inhibitor, VRK-IN-1, on the acetylation and methylation of histone H3 in K4, K9 and K27 was determined under different conditions, arrested or proliferating cells, in A549 lung adenocarcinoma and U2OS osteosarcoma cells. RESULTS: Chromatin organization is determined by the phosphorylation pattern of histones mediated by different types of enzymes. We have studied how the VRK1 chromatin kinase can alter the epigenetic posttranslational modifications of histones by using siRNA, a specific inhibitor of this kinase (VRK-IN-1), and of histone acetyl and methyl transferases, as well as histone deacetylase and demethylase. Loss of VRK1 implicated a switch in the state of H3K9 posttranslational modifications. VRK1 depletion/inhibition causes a loss of H3K9 acetylation and facilitates its methylation. This effect is similar to that of the KAT inhibitor C646, and to KDM inhibitors as iadademstat (ORY-1001) or JMJD2 inhibitor. Alternatively, HDAC inhibitors (selisistat, panobinostat, vorinostat) and KMT inhibitors (tazemetostat, chaetocin) have the opposite effect of VRK1 depletion or inhibition, and cause increase of H3K9ac and a decrease of H3K9me3. VRK1 stably interacts with members of these four enzyme families. However, VRK1 can only play a role on these epigenetic modifications by indirect mechanisms in which these epigenetic enzymes are likely targets to be regulated and coordinated by VRK1. CONCLUSIONS: The chromatin kinase VRK1 regulates the epigenetic patterns of histone H3 acetylation and methylation in lysines 4, 9 and 27. VRK1 is a master regulator of chromatin organization associated with its specific functions, such as transcription or DNA repair.


Subject(s)
Chromatin , Histones , Histones/metabolism , Protein Processing, Post-Translational , Epigenesis, Genetic
5.
Biochim Biophys Acta Gene Regul Mech ; 1865(8): 194887, 2022 11.
Article in English | MEDLINE | ID: mdl-36280132

ABSTRACT

The regulation of histone epigenetic modifications mediates the adaptation of chromatin to different biological processes. DNA damage causes a local relaxation of chromatin associated to histone H4 acetylation in K16, mediated by Tip60/KAT5. In this work, we have studied the role that the VRK1 chromatin kinase plays on the activation of Tip60 during this process. In the DNA damage response induced by doxorubicin, VRK1 directly phosphorylates Tip60. However, the phosphorylated Tip60 residues and their functional roles are unknown. In DDR, we have identified these two Tip60 phosphorylated residues and the cooperation of the participating kinases. The T158 phosphorylation, mediated by VRK1, is early and transient, preceding that of S199, which is more sustained in time, and mediated by DNA-PK. The role of each phosphorylated residues was determined by using phosphomimetic and phosphonull mutants and their combination. T158 phosphorylation protects Tip60 from ubiquitin-mediated degradation, promotes its recruitment to chromatin from the nucleoplasm, and is necessary for its full trans-acetylase activity. The phosphorylation in S199 by DNA-PK directly facilitates Tip60 autoacetylation, but it is not enough for trans-acetylation of two of its targets, histone H4 and ATM, which requires a double phosphorylation of Tip60 in T158 and S199. DNA-PK inhibitors block the phosphorylation of S199. We propose a model in which the cooperation between VRK1 and DNA-PK mediates the sequential phosphorylation of Tip60/KAT5, and contributes to the recruitment of this protein to initiate the sequential remodeling of chromatin in DDR. Both proteins are candidates for novel synthetic lethality strategies in cancer treatment.


Subject(s)
Chromatin , Histones , Phosphorylation , Histones/metabolism , DNA Damage , DNA/metabolism
6.
Front Cell Dev Biol ; 9: 715126, 2021.
Article in English | MEDLINE | ID: mdl-34540832

ABSTRACT

BACKGROUND: Chromatin is dynamically remodeled to adapt to all DNA-related processes, including DNA damage responses (DDR). This adaptation requires DNA and histone epigenetic modifications, which are mediated by several types of enzymes; among them are lysine methyltransferases (KMTs). METHODS: KMT inhibitors, chaetocin and tazemetostat (TZM), were used to study their role in the DDR induced by ionizing radiation or doxorubicin in two human sarcoma cells lines. The effect of these KMT inhibitors was tested by the analysis of chromatin epigenetic modifications, H4K16ac and H4K20me2. DDR was monitored by the formation of γH2AX, MDC1, NBS1 and 53BP1 foci, and the induction of apoptosis. RESULTS: Chaetocin and tazemetostat treatments caused a significant increase of H4K16 acetylation, associated with chromatin relaxation, and increased DNA damage, detected by the labeling of free DNA-ends. These inhibitors significantly reduced H4K20 dimethylation levels in response to DNA damage and impaired the recruitment of 53BP1, but not of MDC1 and NBS1, at DNA damaged sites. This modification of epigenetic marks prevents DNA repair by the NHEJ pathway and leads to cell death. CONCLUSION: KMT inhibitors could function as sensitizers to DNA damage-based therapies and be used in novel synthetic lethality strategies for sarcoma treatment.

7.
Front Cell Dev Biol ; 9: 683038, 2021.
Article in English | MEDLINE | ID: mdl-34195200

ABSTRACT

BACKGROUND: Glioblastomas treated with temozolomide frequently develop resistance to pharmacological treatments. Therefore, there is a need to find alternative drug targets to reduce treatment resistance based on tumor dependencies. A possibility is to target simultaneously two proteins from different DNA-damage repair pathways to facilitate tumor cell death. Therefore, we tested whether targeting the human chromatin kinase VRK1 by RNA interference can identify this protein as a novel molecular target to reduce the dependence on temozolomide in combination with olaparib, based on synthetic lethality. MATERIALS AND METHODS: Depletion of VRK1, an enzyme that regulates chromatin dynamic reorganization and facilitates resistance to DNA damage, was performed in glioblastoma cells treated with temozolomide, an alkylating agent used for GBM treatment; and olaparib, an inhibitor of PARP-1, used as sensitizer. Two genetically different human glioblastoma cell lines, LN-18 and LN-229, were used for these experiments. The effect on the DNA-damage response was followed by determination of sequential steps in this process: H4K16ac, γH2AX, H4K20me2, and 53BP1. RESULTS: The combination of temozolomide and olaparib increased DNA damage detected by labeling free DNA ends, and chromatin relaxation detected by H4K16ac. The combination of both drugs, at lower doses, resulted in an increase in the DNA damage response detected by the formation of γH2AX and 53BP1 foci. VRK1 depletion did not prevent the generation of DNA damage in TUNEL assays, but significantly impaired the DNA damage response induced by temozolomide and olaparib, and mediated by γH2AX, H4K20me2, and 53BP1. The combination of these drugs in VRK1 depleted cells resulted in an increase of glioblastoma cell death detected by annexin V and the processing of PARP-1 and caspase-3. CONCLUSION: Depletion of the chromatin kinase VRK1 promotes tumor cell death at lower doses of a combination of temozolomide and olaparib treatments, and can be a novel alternative target for therapies based on synthetic lethality.

8.
Cancer Lett ; 503: 117-128, 2021 04 10.
Article in English | MEDLINE | ID: mdl-33516791

ABSTRACT

VRK1 is a nuclear Ser-Thr chromatin kinase that does not mutate in cancer, and is overexpressed in many types of tumors and associated with a poor prognosis. Chromatin VRK1 phosphorylates several transcription factors, including p53, histones and proteins implicated in DNA damage response pathways. In the context of cell proliferation, VRK1 regulates entry in cell cycle, chromatin condensation in G2/M, Golgi fragmentation, Cajal body dynamics and nuclear envelope assembly in mitosis. This kinase also controls the initial chromatin relaxation associated with histone acetylation, and the non-homologous-end joining (NHEJ) DNA repair pathway, which involves sequential steps such as γH2AX, NBS1 and 53BP1 foci formation, all phosphorylated by VRK1, in response to ionizing radiation or chemotherapy. In addition, VRK1 can be an alternative target for therapies based on synthetic lethality strategies. Therefore, VRK1 roles on proliferation have a pro-tumorigenic effect. Functions regulating chromatin stability and DNA damage responses have a protective anti-tumor role in normal cells, but in tumor cells can also facilitate resistance to genotoxic treatments.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Up-Regulation , Cell Proliferation , Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Humans , Phosphorylation , Prognosis , Transcription Factors/metabolism
9.
Nat Commun ; 10(1): 4200, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519880

ABSTRACT

The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex.


Subject(s)
Actins/metabolism , Vimentin/metabolism , Blotting, Western , Cell Division/physiology , Cell Line, Tumor , Humans , Intermediate Filaments/metabolism , Microscopy, Fluorescence , Mitosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...