Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(1): 102903, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38401123

ABSTRACT

Here, we present a protocol for lentiviral delivery of CRISPR-Cas9 to human induced pluripotent stem cell (iPSC)-derived macrophages using co-incubation with VPX virus-like particles (VPX-VLPs). We describe steps for producing polybrene and puromycin kill curves, VPX viral production, and VPX-VLP titration by western blotting. We then detail procedures for iPSC macrophage precursor lentiviral transduction and lentiviral CRISPR-Cas9-based knockout in iPSC-derived macrophages. This protocol uses efficient genome-editing techniques to explore macrophage involvement in immune response, chronic inflammation, neurodegenerative disease, and cancer progression. For complete details on the use and execution of this protocol, please refer to Navarro-Guerrero et al.1.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , CRISPR-Cas Systems/genetics , Gene Editing/methods , Macrophages
2.
Nat Genet ; 55(1): 54-65, 2023 01.
Article in English | MEDLINE | ID: mdl-36543916

ABSTRACT

Identification of the genes and processes mediating genetic association signals for complex diseases represents a major challenge. As many of the genetic signals for type 2 diabetes (T2D) exert their effects through pancreatic islet-cell dysfunction, we performed a genome-wide pooled CRISPR loss-of-function screen in a human pancreatic beta cell line. We assessed the regulation of insulin content as a disease-relevant readout of beta cell function and identified 580 genes influencing this phenotype. Integration with genetic and genomic data provided experimental support for 20 candidate T2D effector transcripts including the autophagy receptor CALCOCO2. Loss of CALCOCO2 was associated with distorted mitochondria, less proinsulin-containing immature granules and accumulation of autophagosomes upon inhibition of late-stage autophagy. Carriers of T2D-associated variants at the CALCOCO2 locus further displayed altered insulin secretion. Our study highlights how cellular screens can augment existing multi-omic efforts to support mechanistic understanding and provide evidence for causal effects at genome-wide association studies loci.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genome-Wide Association Study , Insulin/genetics , Insulin-Secreting Cells/metabolism
3.
Sci Rep ; 11(1): 4245, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608581

ABSTRACT

Genome engineering using CRISPR/Cas9 technology enables simple, efficient and precise genomic modifications in human cells. Conventional immortalized cell lines can be easily edited or screened using genome-wide libraries with lentiviral transduction. However, cell types derived from the differentiation of induced Pluripotent Stem Cells (iPSC), which often represent more relevant, patient-derived models for human pathology, are much more difficult to engineer as CRISPR/Cas9 delivery to these differentiated cells can be inefficient and toxic. Here, we present an efficient, lentiviral transduction protocol for delivery of CRISPR/Cas9 to macrophages derived from human iPSC with efficiencies close to 100%. We demonstrate CRISPR/Cas9 knockouts for three nonessential proof-of-concept genes-HPRT1, PPIB and CDK4. We then scale the protocol and validate for a genome-wide pooled CRISPR/Cas9 loss-of-function screen. This methodology enables, for the first time, systematic exploration of macrophage involvement in immune responses, chronic inflammation, neurodegenerative diseases and cancer progression, using efficient genome editing techniques.


Subject(s)
CRISPR-Cas Systems , Cell Differentiation/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Macrophages/cytology , Macrophages/metabolism , Gene Knockdown Techniques , Genome-Wide Association Study , Genomic Library , Humans
4.
Int J Mol Sci ; 21(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153142

ABSTRACT

The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. Each glomerulus contains neuron-like, O2-sensing glomus cells, which are innervated by sensory fibers of the petrosal ganglion and are located in close contact with a dense network of fenestrated capillaries. In response to hypoxia, glomus cells release transmitters to activate afferent fibers impinging on the respiratory and autonomic centers to induce hyperventilation and sympathetic activation. Glomus cells are embraced by interdigitating processes of sustentacular, glia-like, type II cells. The CB has an extraordinary structural plasticity, unusual for a neural tissue, as it can grow several folds its size in subjects exposed to sustained hypoxia (as for example in high altitude dwellers or in patients with cardiopulmonary diseases). CB growth in hypoxia is mainly due to the generation of new glomeruli and blood vessels. In recent years it has been shown that the adult CB contains a collection of quiescent multipotent stem cells, as well as immature progenitors committed to the neurogenic or the angiogenic lineages. Herein, we review the main properties of the different cell types in the CB germinal niche. We also summarize experimental data suggesting that O2-sensitive glomus cells are the master regulators of CB plasticity. Upon exposure to hypoxia, neurotransmitters and neuromodulators released by glomus cells act as paracrine signals that induce proliferation and differentiation of multipotent stem cells and progenitors, thus causing CB hypertrophy and an increased sensory output. Pharmacological modulation of glomus cell activity might constitute a useful clinical tool to fight pathologies associated with exaggerated sympathetic outflow due to CB overactivation.


Subject(s)
Carotid Body/cytology , Neurotransmitter Agents/physiology , Stem Cell Niche/physiology , Adaptation, Physiological/physiology , Animals , Cell Differentiation/physiology , Humans , Hypoxia/metabolism , Hypoxia/physiopathology , Neurogenesis/physiology , Neurons/physiology , Neurotransmitter Agents/metabolism , Oxygen/metabolism
5.
Wellcome Open Res ; 4: 150, 2019.
Article in English | MEDLINE | ID: mdl-31976379

ABSTRACT

Type 2 diabetes (T2D) is a global pandemic with a strong genetic component, but most causal genes influencing the disease risk remain unknown. It is clear, however, that the pancreatic beta cell is central to T2D pathogenesis. In vitro gene-knockout (KO) models to study T2D risk genes have so far focused on rodent beta cells. However, there are important structural and functional differences between rodent and human beta cell lines. With that in mind, we have developed a robust pipeline to create a stable CRISPR/Cas9 KO in an authentic human beta cell line (EndoC-ßH1). The KO pipeline consists of a dual lentiviral sgRNA strategy and we targeted three genes ( INS, IDE, PAM) as a proof of concept. We achieved a significant reduction in mRNA levels and complete protein depletion of all target genes. Using this dual sgRNA strategy, up to 94 kb DNA were cut out of the target genes and the editing efficiency of each sgRNA exceeded >87.5%. Sequencing of off-targets showed no unspecific editing. Most importantly, the pipeline did not affect the glucose-responsive insulin secretion of the cells. Interestingly, comparison of KO cell lines for NEUROD1 and SLC30A8 with siRNA-mediated knockdown (KD) approaches demonstrate phenotypic differences. NEUROD1-KO cells were not viable and displayed elevated markers for ER stress and apoptosis. NEUROD1-KD, however, only had a modest elevation, by 34%, in the pro-apoptotic transcription factor CHOP and a gene expression profile indicative of chronic ER stress without evidence of elevated cell death. On the other hand, SLC30A8-KO cells demonstrated no reduction in K ATP channel gene expression in contrast to siRNA silencing. Overall, this strategy to efficiently create stable KO in the human beta cell line EndoC-ßH1 will allow for a better understanding of genes involved in beta cell dysfunction, their underlying functional mechanisms and T2D pathogenesis.

6.
Cell Mol Life Sci ; 76(6): 1027-1039, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30498994

ABSTRACT

Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.


Subject(s)
Adult Stem Cells/physiology , Carotid Body/physiology , Neural Stem Cells/physiology , Peripheral Nervous System/physiology , Stem Cell Niche , Adaptation, Physiological/physiology , Adult , Humans , Hypoxia , Multipotent Stem Cells/physiology
7.
Cell Rep ; 19(3): 471-478, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423311

ABSTRACT

Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been a matter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxia-released vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy.


Subject(s)
Adult Stem Cells/physiology , Carotid Body/cytology , Mammals/metabolism , Neural Stem Cells/physiology , Neuronal Plasticity , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Animals , Blood Vessels/cytology , Cell Differentiation/drug effects , Cell Hypoxia/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Erythropoietin/pharmacology , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice, Transgenic , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Multipotent Stem Cells/metabolism , Neovascularization, Physiologic/drug effects , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neuronal Plasticity/drug effects
8.
Stem Cells ; 34(6): 1637-50, 2016 06.
Article in English | MEDLINE | ID: mdl-26866353

ABSTRACT

Neural stem cells (NSCs) are promising tools for understanding nervous system plasticity and repair, but their use is hampered by the lack of markers suitable for their prospective isolation and characterization. The carotid body (CB) contains a population of peripheral NSCs, which support organ growth during acclimatization to hypoxia. We have set up CB neurosphere (NS) cultures enriched in differentiated neuronal (glomus) cells versus undifferentiated progenitors to investigate molecular hallmarks of cell classes within the CB stem cell (CBSC) niche. Microarray gene expression analysis in NS is compatible with CBSCs being neural crest derived-multipotent progenitor cells able to sustain CB growth upon exposure to hypoxia. Moreover, we have identified CD10 as a marker suitable for isolation of a population of CB mesectoderm-committed progenitor cells. CD10 + cells are resting in normoxia, and during hypoxia they are activated to proliferate and to eventually complete maturation into mesectodermal cells, thus participating in the angiogenesis necessary for CB growth. Our results shed light into the molecular and cellular mechanisms involved in CBSC fate choice, favoring a potential use of these cells for cell therapy. Stem Cells 2016;34:1637-1650.


Subject(s)
Carotid Body/cytology , Cell Lineage , Ectoderm/cytology , Gene Expression Profiling , Mesoderm/cytology , Neprilysin/metabolism , Neural Crest/cytology , Neural Stem Cells/cytology , Animals , Biomarkers/metabolism , Cell Count , Cell Differentiation/genetics , Cell Hypoxia/genetics , Endothelin-1/metabolism , Gene Expression Regulation , Mice, Transgenic , Neural Stem Cells/metabolism , Oligonucleotide Array Sequence Analysis , Rats, Wistar , Spheroids, Cellular/cytology , Stem Cell Niche/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...