Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mov Ecol ; 11(1): 55, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658459

ABSTRACT

BACKGROUND: Long-distance migratory birds spend most of their annual cycle in non-breeding areas. During this period birds must meet their daily nutritional needs and acquire additional energy intake to deal with future events of the annual cycle. Therefore, patterns of space use and movement may emerge as an efficient strategy to maintain a trade-off between acquisition and conservation of energy during the non-breeding season. However, there is still a paucity of research addressing this issue, especially in trans-hemispheric migratory birds. METHODS: Using GPS-tracking data and a recently developed continuous-time stochastic process modeling framework, we analyzed fine-scale movements in a non-breeding population of Hudsonian godwits (Limosa haemastica), a gregarious long-distance migratory shorebird. Specifically, we evaluated if these extreme migrants exhibit restricted, shared, and periodic patterns of space use on one of their main non-breeding grounds in southern South America. Finally, via a generalized additive model, we tested if the observed patterns were consistent within a circadian cycle. RESULTS: Overall, godwits showed finely-tuned range-residence and periodic movements (each 24-72 h), being similar between day and night. Remarkably, range-resident individuals segregated spatially into three groups. In contrast, a smaller fraction of godwits displayed unpredictable and irregular movements, adding functional connectivity within the population. CONCLUSIONS: In coastal non-breeding areas where resource availability is highly predictable due to tidal cycles, range-resident strategies during both the day and night are the common pattern in a long-distance shorebird population. Alternative patterns exhibited by a fraction of non-resident godwits provide functional connectivity and suggest that the exploratory tendency may be essential for information acquisition and associated with individual traits. The methodological approach we have used contributes to elucidate how the composition of movement phases operates during the non-breeding season in migratory species and can be replicated in non-migratory species as well. Finally, our results highlight the importance of considering movement as a continuum within the annual cycle.

2.
Integr Environ Assess Manag ; 19(3): 663-675, 2023 May.
Article in English | MEDLINE | ID: mdl-36793140

ABSTRACT

Resilience theory has taken center stage in tackling the challenge of wetland recovery on a fast-changing planet. Because of waterbirds' enormous dependence on wetlands, their numbers have long been used as surrogates for wetland recovery over time. However, immigration of individuals can mask actual recoveries at a given wetland. One alternative to expanding the knowledge of wetland recovery is the use of physiological parameters from aquatic organism populations. We explored the variations in the physiological parameters of black-necked swan (BNS) before, during, and after a 16-year period of a pollution-induced disturbance that originated in a pulp-mill wastewater discharge. This disturbance triggered the precipitation of iron (Fe) in the water column of the Río Cruces Wetland in southern Chile, one of the main sites for the global population of BNS Cygnus melancoryphus. We compared our recent (2019) original data (body mass index [BMI], hematocrit, hemoglobin, mean corpuscular volume, blood enzymes, and metabolites) with available datasets from the site obtained before the pollution-induced disturbance (2003) and immediately after the disturbance (2004). Results indicate that, 16 years after the pollution-induced disturbance, some important parameters of animal physiology did not return to their pre-disturbance state. For instance, BMI, triglycerides, and glucose were significantly higher in 2019 than in 2004, right after the disturbance. By contrast, the hemoglobin concentration was significantly lower in 2019 than in 2003 and 2004, and uric acid was 42% higher in 2019 than in 2004. Our results demonstrate that, despite higher BNS numbers with larger body weights present in 2019, the Río Cruces wetland has only partially recovered. We suggest that the impact of megadrought and wetland disappearance far from the site results in high rate of swan immigration, casting uncertainty about using the number of swans alone as honest indicators of wetland recovery after a pollution disturbance. Integr Environ Assess Manag 2023;19:663-675. © 2023 SETAC.


Subject(s)
Anseriformes , Wetlands , Animals , Anseriformes/physiology , Chile
3.
Ecol Appl ; 33(3): e2799, 2023 04.
Article in English | MEDLINE | ID: mdl-36504174

ABSTRACT

Extensive seaweed aquaculture is a growing industry expected to expand globally due to its relatively low impact and benefits in the form of ecosystem services. However, seaweeds are ecosystem engineers that may alter coastal environments by creating complex habitats on previously bare mudflats. These changes may scale up to top-consumers, particularly migratory shorebirds, species of conservation concern that regulate trophic webs at these habitats. Understanding how habitats are transformed and how this affects different species is critical to direct ecological applications for commercial seaweed management. We experimentally assessed through a Before-After Control-Impact design the potential changes exerted by Gracilaria chilensis farming on bare mudflats on the abundance, biomass, and assemblage structure of benthic macroinvertebrates, and their scaled-up effects on shorebirds' habitat use and prey consumption. As predicted, experimental cultivation of G. chilensis significantly affects different components of biodiversity that scale-up from lower to upper trophic levels. The total biomass of benthic macroinvertebrates increased with seaweed cultivation and remained high for at least 2 months after harvest, boosted by an increase in the median size of polychaetes, particularly Nereids. Tactile-foraging shorebirds tracked these changes at the patch level increasing their abundance and spending more time foraging at seaweed cultivated plots. These results suggest that seaweed farming has the potential to impact shorebird populations by favoring tactile-foraging species which could lead to a competitive disadvantage to species that rely on visual cues. Therefore, the establishment of new seaweed farms in bare mudflats at key sites for shorebirds must be planned warranting habitat heterogeneity (i.e., cultivated and non-cultivated areas) at the landscape level and based on a previous experimental approach to account for local characteristics. Fostering properly designed extensive seaweed farming over other aquaculture industries with greater negative environmental impacts would provide benefits for human well-being and for ecosystem functions.


Subject(s)
Biodiversity , Ecosystem , Seaweed , Humans , Agriculture , Aquaculture , Invertebrates , Birds
4.
Science ; 376(6589): 144, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389807
5.
Physiol Biochem Zool ; 95(3): 239-250, 2022.
Article in English | MEDLINE | ID: mdl-35443149

ABSTRACT

AbstractHibernation (i.e., seasonal or multiday torpor) has been described in mammals from five continents and represents an important adaptation for energy economy. However, direct quantifications of energy savings by hibernation are challenging because of the complexities of estimating energy expenditure in the field. Here, we applied quantitative magnetic resonance to determine body fat and body composition in hibernating Dromiciops gliroides (monito del monte). During an experimental period of 31 d in winter, fat was significantly reduced by 5.72±0.45 g, and lean mass was significantly reduced by 2.05±0.14 g. This fat and lean mass consumption is equivalent to a daily energy expenditure of hibernation (DEEH) of 8.89±0.6 kJ d-1, representing 13.4% of basal metabolic rate, with a proportional contribution of fat and lean mass consumption to DEEH of 81% and 18%, respectively. During the deep heterothermic bouts of monitos, body temperature remained 0.41°C ± 0.2°C above ambient temperature, typical of hibernators. Animals shut down metabolism and passively cool down to a critical defended temperature of 5.0°C ± 0.1°C, where they begin thermoregulation in torpor. Using temperature data loggers, we obtained an empirical estimation of minimum thermal conductance of 3.37±0.19 J g-1 h-1 °C-1, which is 107% of the expectation by allometric equations. With this, we parameterized body temperature/ambient temperature time series to calculate torpor parameters and metabolic rates in euthermia and torpor. Whereas the acute metabolic fall in each torpor episode is about 96%, the energy saved by hibernation is 88% (compared with the DEE of active animals), which coincides with values from the literature at similar body mass. Thus, estimating body composition provides a simple method to measure the energy saved by hibernation in mammals.


Subject(s)
Hibernation , Marsupialia , Torpor , Animals , Body Composition , Body Temperature , Energy Metabolism , Mammals , Marsupialia/metabolism , South America
6.
Proc Biol Sci ; 289(1970): 20212388, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35259988

ABSTRACT

The development of technologies to slow climate change has been identified as a global imperative. Nonetheless, such 'green' technologies can potentially have negative impacts on biodiversity. We explored how climate change and the mining of lithium for green technologies influence surface water availability, primary productivity and the abundance of three threatened and economically important flamingo species in the 'Lithium Triangle' of the Chilean Andes. We combined climate and primary productivity data with remotely sensed measures of surface water levels and a 30-year dataset on flamingo abundance using structural equation modelling. We found that, regionally, flamingo abundance fluctuated dramatically from year-to-year in response to variation in surface water levels and primary productivity but did not exhibit any temporal trends. Locally, in the Salar de Atacama-where lithium mining is focused-we found that mining was negatively correlated with the abundance of two of the three flamingo species. These results suggest continued increases in lithium mining and declines in surface water could soon have dramatic effects on flamingo abundance across their range. Efforts to slow the expansion of mining and the impacts of climate change are, therefore, urgently needed to benefit local biodiversity and the local human economy that depends on it.


Subject(s)
Climate Change , Lithium , Animals , Biodiversity , Birds , Humans , Water
7.
Mov Ecol ; 10(1): 11, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35255994

ABSTRACT

BACKGROUND: Conditions encountered en route can dramatically impact the energy that migratory species spend on movement. Migratory birds often manage energetic costs by adjusting their behavior in relation to wind conditions as they fly. Wind-influenced behaviors can offer insight into the relative importance of risk and resistance during migration, but to date, they have only been studied in a limited subset of avian species and flight types. We add to this understanding by examining in-flight behaviors over a days-long, barrier-crossing flight in a migratory shorebird. METHODS: Using satellite tracking devices, we followed 25 Hudsonian godwits (Limosa haemastica) from 2019-2021 as they migrated northward across a largely transoceanic landscape extending > 7000 km from Chiloé Island, Chile to the northern coast of the Gulf of Mexico. We identified in-flight behaviors during this crossing by comparing directions of critical movement vectors and used mixed models to test whether the resulting patterns supported three classical predictions about wind and migration. RESULTS: Contrary to our predictions, compensation did not increase linearly with distance traveled, was not constrained during flight over open ocean, and did not influence where an individual ultimately crossed over the northern coast of the Gulf of Mexico at the end of this flight. Instead, we found a strong preference for full compensation throughout godwit flight paths. CONCLUSIONS: Our results indicate that compensation is crucial to godwits, emphasizing the role of risk in shaping migratory behavior and raising questions about the consequences of changing wind regimes for other barrier-crossing aerial migrants.

8.
Ecol Evol ; 11(19): 13379-13389, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34646476

ABSTRACT

Varying environmental conditions and energetic demands can affect habitat use by predators and their prey. Anthropogenic habitats provide an opportunity to document both predation events and foraging activity by prey and therefore enable an empirical evaluation of how prey cope with trade-offs between starvation and predation risk in environments of variable foraging opportunities and predation danger. Here, we use seven years of observational data of peregrine falcons Falco peregrinus and shorebirds at a semi-intensive shrimp farm to determine how starvation and predation risk vary for shorebirds under a predictable variation in foraging opportunities. Attack rate (mean 0.1 attacks/hr, equating 1 attack every ten hours) was positively associated with the total foraging area available for shorebirds at the shrimp farm throughout the harvesting period, with tidal amplitude at the adjacent mudflat having a strong nonlinear (quadratic) effect. Hunt success (mean 14%) was higher during low tides and declined as the target flocks became larger. Finally, individual shorebird vigilance behaviors were more frequent when birds foraged in smaller flocks at ponds with poorer conditions. Our results provide empirical evidence of a risk threshold modulated by tidal conditions at the adjacent wetlands, where shorebirds trade-off risk and rewards to decide to avoid or forage at the shrimp farm (a potentially dangerous habitat) depending on their need to meet daily energy requirements. We propose that semi-intensive shrimp farms serve as ideal "arenas" for studying predator-prey dynamics of shorebirds and falcons, because harvest operations and regular tidal cycles create a mosaic of foraging patches with predictable food supply. In addition, the relatively low hunt success suggests that indirect effects associated with enhanced starvation risk are important in shorebird life-history decisions.

9.
Parasitol Res ; 120(9): 3319-3324, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34347167

ABSTRACT

High-performance-validated tests are essential for successful epidemiological monitoring, surveillance of parasitic infections, and comparative studies in wildlife populations. The Mini-FLOTAC is a novel flotation-based technique for the sensitive detection and quantification of gastrointestinal parasites that is recently being explored for use in wildlife. A limitation of any flotation-based copromicroscopic method is the selection of the flotation solution (FS), which might influence the performance of the test. However, no study has compared the influence of using different FS in the Mini-FLOTAC technique for parasite detection in wild birds. Here, we evaluated the diagnostic performance of the Mini-FLOTAC in three waterbird host species using two widely used FS: saturated salt (NaCl; specific gravity 1.20) and saturated zinc sulfate (ZnSO4; specific gravity 1.35). One hundred fresh fecal samples were analyzed for parasite fecal egg counts (FEC). Regardless of the host species, fecal samples evaluated with the Mini-FLOTAC method using ZnSO4 resulted in a significantly higher detection rate and higher FEC of strongylid, capillarid, cestode, and trematode parasites, than samples analyzed with the NaCl solution. Our concise study demonstrated the importance of using an appropriate FS for the identification of parasite eggs in wildlife species, especially in hosts with an expected aggregated distribution and low parasite load such as waterbird hosts. The higher analytical sensitivity of the Mini-FLOTAC technique achieved with ZnSO4, and its applicability to fieldwork, highlights this method as a promising tool for the quantitative surveillance of parasite infections in wild bird populations.


Subject(s)
Birds/parasitology , Helminths , Intestinal Diseases, Parasitic , Animals , Animals, Wild/parasitology , Feces/parasitology , Helminths/isolation & purification , Intestinal Diseases, Parasitic/diagnosis , Intestinal Diseases, Parasitic/veterinary , Parasite Egg Count , Sensitivity and Specificity
11.
Sci Total Environ ; 777: 146004, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33689894

ABSTRACT

Large amounts of antibiotics from different sources have been released into coastal environments, especially in high human-populated areas, but comprehensive studies of antibiotic footprint in wildlife are scarce. Here we assess occurrence of antibiotic resistant bacteria (ARB) and antibiotic resistance gene (ARG) both in sediments and gut microbiota of a long-distance migratory shorebird species in two coastal wetlands at a sparsely-populated area in Pacific Patagonian coasts with contrasting potential antibiotic sources, especially from aquaculture. We found 62% of sediment samples showing ARB, and ARGs similarly occurring in sediments at both bays. However multi-resistant ARB were found only at sediments in the bay surrounding aquaculture operations. An 87% of cloacal bird samples showed at least one ARB, with 63% being multi-resistant and some of them with a high potential pathogenicity. ARGs were present in 46% of the samples from birds, with similar multi-resistant frequencies among bays. Besides specific differences mainly associated to antibiotics used in salmon aquaculture that boosted ARB in sediments, ARB and ARGs occurrence was overall similar at two bays with contrasting main human activities, in spite of being a comparatively low human-populated area. Therefore, our results reinforce the idea that the antibiotic footprint may be widespread at a global scale and can extend beyond the geographical influence of antibiotic sources, especially at coastal environments where migratory shorebirds act both as reservoirs and potential spreaders of antibiotic resistance.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Birds/microbiology , Drug Resistance, Microbial , Animals , Anti-Bacterial Agents/pharmacology , Aquaculture , Bays , Drug Resistance, Microbial/genetics , Gastrointestinal Microbiome , Genes, Bacterial
12.
Animals (Basel) ; 11(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445632

ABSTRACT

Dogs on sandy beaches are a threat to shorebirds. Managing this problem requires understanding the factors that influence the abundance of dogs in these ecosystems. We aimed to determine the proportion of beaches used by dogs and the effects of human presence on dog abundance on sandy beaches of southern Chile. We conducted dog counts and recorded the presence of tracks on 14 beaches. We used zero-inflated generalized linear mixed models to determine if the number of people, number of households, and other covariates were associated with dog abundance. We detected dog tracks on all the beaches, and dog sightings on most of them. Dogs were frequently not supervised (45%) and only 13% of them were leashed. The number of people on the beach and the number of houses near the beach were positively associated with the number of dogs on beaches. Finally, when dogs co-occurred with whimbrels (Numenius phaeopus), the probability of dog harassment was high (59%). Our work reveals that human presence determines the abundance of dogs on sandy beaches. Therefore, our study suggests that any strategy aiming at reducing dog harassment of shorebirds requires changes in those human behaviors that favor the presence of free-ranging dogs at beaches.

13.
J Environ Manage ; 262: 110290, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32090889

ABSTRACT

How to improve habitat quality for wildlife is of particular importance in areas dedicated to food production, due to increasing pressures of global demands associated to human population growth. Semi-intensive aquaculture ponds can provide a potentially important foraging habitat for migratory shorebirds throughout the non-breeding season. Therefore, understanding the availability of benthic invertebrates in aquaculture ponds will help to identify proper management decisions for shorebird conservation. We used an exclosure experiment during the first three days after shrimp harvesting at semi-intensive aquaculture ponds in north-west Mexico to assess shorebird predation on benthic invertebrates. We found that shorebird predation did not deplete total benthic invertebrate density (particularly polychaete worms), but significantly affected the prey size distributions and biomass in the ponds during a short-time window of just three days. Shorebirds removed 0.6 g ash-free dry weight m-2, equivalent to 43% of the initial biomass and showed high selectivity for polychaetes larger than >40 mm as prey, potentially explaining the absence of large polychaetes at the end of the experiment. This depletion was the likely cause of the daily decrease observed in overall density of foraging shorebirds at recently harvested ponds. These results can serve to identify management actions that allow an extended use of semi-intensive aquaculture ponds as foraging sites for migratory shorebirds during the non-breeding season, with potential applications to develop standards for a friendlier aquaculture management.


Subject(s)
Invertebrates , Ponds , Animals , Aquaculture , Ecosystem , Humans , Mexico
14.
Mitochondrial DNA B Resour ; 5(3): 3553-3554, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33458238

ABSTRACT

We report the mitochondrial genome sequences of two migratory shorebirds, the Hudsonian godwit (Limosa haemastica) and the Red knot (Calidris canutus) obtained through shotgun sequencing. The mitogenome is of 16.445 bp for the godwit and 15.609 bp for the knot containing thirteen protein-coding genes, two rRNAs, twenty-two tRNAs, and a control region. The ATP8 and tRNA-Glu were not found in the knot. Bayesian phylogenetic analysis supported the position of both species in the clade of the Scolopacidae Family.

15.
Sci Rep ; 9(1): 17616, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772390

ABSTRACT

The high metabolic activity associated with endurance flights and intense fuelling of migrant birds may produce large quantities of reactive oxygen species, which cause oxidative damage. Yet it remains unknown how long-lived birds prepare for oxidative challenges prior to extreme flights. We combined blood measurements of oxidative status and enzyme and fat metabolism in Hudsonian godwits (Limosa haemastica, a long-lived shorebird) before they embarked on non-stop flights longer than 10,000 km during their northbound migrations. We found that godwits increased total antioxidant capacity (TAC) and reduced oxidative damage (TBARS) as the pre-migratory season progressed, despite higher basal metabolic rates before departure. Elevations in plasma ß-hydroxybutyrate and uric acid suggest that lipid and protein breakdown supports energetic requirements prior to migration. Significant associations between blood mitochondrial cytochrome-c oxidase and plasma TAC (negative) and TBARS (positive) during winter indicate that greater enzyme activity can result in greater oxidative damage and antioxidant responses. However enzyme activity remained unchanged between winter and premigratory stages, so birds may be unable to adjust metabolic enzyme activity in anticipation of future demands. These results indicate that godwits enhance their oxidative status during migratory preparation, which might represent an adaptation to diminish the physiological costs of long-distance migration.


Subject(s)
Animal Migration/physiology , Charadriiformes/metabolism , Flight, Animal/physiology , Oxidative Stress , 3-Hydroxybutyric Acid/blood , Adiposity , Animals , Antioxidants/analysis , Basal Metabolism , Citrate (si)-Synthase/blood , Electron Transport Complex IV/blood , Energy Metabolism , Erythrocytes/chemistry , Female , Lipid Peroxidation , Longevity , Male , Seasons , Thiobarbituric Acid Reactive Substances/analysis , Triglycerides/blood , Uric Acid/blood
16.
PLoS One ; 14(7): e0220400, 2019.
Article in English | MEDLINE | ID: mdl-31344107

ABSTRACT

Loss of natural wetlands is a global phenomenon that has severe consequences for waterbird populations and their associated ecosystem services. Although agroecosystems can reduce the impact of natural habitat loss, drivers of use of such artificial habitats by waterbirds remain poorly understood. Using the cosmopolitan northern pintail Anas acuta as a model species, we monitored home-range and fine-scale resource selection across the agricultural landscape. Individuals were tracked using GPS-GSM transmitters, and a suite of environmental and landscape features were measured throughout the winter seasons. Spatial patterns of habitat use were analysed using generalized linear mixed effect models by integrating field-observations with GPS telemetry. All birds used rice fields as foraging grounds at night and commuted to an adjacent reservoir to roost during daylight. Home-ranges and maximum foraging distances of nocturnally foraging birds increased with decreasing availability of flooded fields, and were positively correlated with moonlight levels. Birds selected flooded rice paddies (water depth range: 9-21 cm) with standing stubble and substrate with pebbles smaller than 0.5 cm in diameter. Density of rice seeds, rice paddy size, and other environmental and landscape features did not emerge as significant predictors. Our findings indicate that nocturnal foraging of northern pintails within rice fields is driven primarily by straw manipulation, water level and substrate pebble size. Thus, the presence of standing stubble in flooded paddies with soft bottoms should be prioritized to improve foraging areas for dabbling ducks. These management procedures in themselves would not increase economic costs or affect rice production and could be applied for dabbling-duck conservation throughout the world.


Subject(s)
Agriculture , Anseriformes/physiology , Circadian Rhythm/physiology , Ecosystem , Wetlands , Agriculture/methods , Animal Migration/physiology , Animals , Behavior, Animal , Floods , Oryza/growth & development , Rivers , Seasons , Spain
17.
PLoS One ; 14(3): e0212441, 2019.
Article in English | MEDLINE | ID: mdl-30865657

ABSTRACT

Human presence at intertidal areas could impact coastal biodiversity, including migratory waterbird species and the ecosystem services they provide. Assessing this impact is therefore essential to develop management measures compatible with migratory processes and associated biodiversity. Here, we assess the effects of human presence on the foraging opportunities of Hudsonian godwits (Limosa haemastica, a trans-hemispheric migratory shorebird) during their non-breeding season on Chiloé Island, southern Chile. We compared bird density and time spent foraging in two similar bays with contrasting disturbance levels: human presence (mostly seaweed harvesters accompanied by dogs) was on average 0.9±0.4 people per 10 ha in the disturbed bay, whereas it was negligible (95% days absent) in the non-disturbed bay. Although overall abundances were similar between bays, godwit density was higher in the non-disturbed bay throughout the low tide period. Both days after the start of the non-breeding season and tidal height significantly affected godwit density, with different effects in either bay. Time spent foraging was significantly higher in the non-disturbed bay (86.5±1.1%) than in the disturbed one (81.3±1.4%). As expected, godwit density significantly decreased with the number of people and accompanying dogs in the disturbed bay. Our results indicate that even a low density of people and dogs can significantly reduce the foraging opportunities of shorebirds. These constraints, coupled with additional flushing costs, may negatively affect godwits' pre-migratory fattening. Hence, as a first step we suggest limiting human presence within bays on Chiloé to 1 person per 10 ha and banning the presence of accompanying dogs in sensitive conservation areas.


Subject(s)
Animal Migration , Biodiversity , Charadriiformes/physiology , Conservation of Natural Resources , Animals , Bays , Dogs , Humans
19.
PLoS One ; 10(10): e0140181, 2015.
Article in English | MEDLINE | ID: mdl-26465601

ABSTRACT

The unusually high quality of census data for large waterbirds in Europe facilitates the study of how population change varies across a broad geographical range and relates to global change. The wintering population of the greylag goose Anser anser in the Atlantic flyway spanning between Sweden and Spain has increased from 120 000 to 610 000 individuals over the past three decades, and expanded its wintering range northwards. Although population sizes recorded in January have increased in all seven countries in the wintering range, we found a pronounced northwards latitudinal effect in which the rate of increase is higher at greater latitudes, causing a constant shift in the centre of gravity for the spatial distribution of wintering geese. Local winter temperatures have a strong influence on goose numbers but in a manner that is also dependent on latitude, with the partial effect of temperature (while controlling for the increasing population trend between years) being negative at the south end and positive at the north end of the flyway. Contrary to assumptions in the literature, the expansion of crops exploited by greylag geese has made little contribution to the increases in population size. Only in one case (expansion of winter cereals in Denmark) did we find evidence of an effect of changing land use. The expanding and shifting greylag population is likely to have increasing impacts on habitats in northern Europe during the course of this century.


Subject(s)
Animal Migration , Geese , Geography , Seasons , Animals , Climate Change , Europe , Population Dynamics
20.
Sci Total Environ ; 511: 288-97, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25553543

ABSTRACT

Waterbirds can reallocate a considerable amount of nutrients within agricultural fields and between agriculture sites and wetlands. However their effects on biogeochemical cycles have rarely been quantified. We estimated bird numbers, diet (from stable isotope analysis), food supply, and the food consumption on rice fields by overwintering waterbirds in one of the most important areas for rice production in southwestern Europe and a key area for various migrating and resident waterbird species. Herein, we modelled the nutrient (N and P) recycling in rice fields, and their transport to reservoirs. The energy consumption by waterbirds (96,605±18,311 individuals) on rice fields during winter averaged at 89.9±39.0 kJ·m(-2), with its majority (89.9%) belonging to foraging on rice seeds. Thus, the birds removed about 26% of rice seeds leftover after harvest (estimated in 932.5±504.7 seeds·m(-2) in early winter) wherein common cranes and dabbling ducks (four species) were the most important consumers. Waterbirds foraging and roosting in the rice fields recycled more than 24.1 (1.0 kg·ha(-1)) of N and an additional 5.0 tons (0.2 kg·ha(-1)) of P in the Extremadura's rice fields during winter. Additionally, we estimated that 2.3 tons of N and 550 kg of P were removed from rice fields and transported to reservoirs. The seasonal foraging of wildlife should result in a direct benefit for rice farmers by improving nutrient recycling through defecation by waterbirds with respect to artificial fertilisation. Additionally, rice fields located in the cranes' core wintering areas can provide sufficient food supply to induce habitat shift from their traditional wintering habitat in 'dehesas' to rice fields, which causes indirect socioeconomic benefit through reduced acorn consumption by cranes. Our modelling approach may thus be especially helpful for management decisions regarding rice agroecosystems in areas which are also important for the conservation of migratory waterbirds.


Subject(s)
Biodiversity , Birds/physiology , Conservation of Natural Resources/methods , Ecological and Environmental Phenomena , Ecosystem , Agriculture , Animals , Oryza , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...