Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 8356081, 2022.
Article in English | MEDLINE | ID: mdl-36211022

ABSTRACT

Diabetes problems can lead to a condition called diabetic retinopathy (DR), which permanently damages the blood vessels in the retina. If not treated, DR is a significant cause of blindness. The only DR treatments currently accessible are those that block or delay vision loss, which emphasizes the value of routine scanning with high-efficiency computer-based technologies to identify patients early. The major goal of this study is to employ a deep learning neural network to identify diabetic retinopathy in the retina's blood vessels. The NN classifier is put to the test using the input fundus image and DR database. It effectively contrasts retinal images and distinguishes between classes when there is a legitimate edge. For the resolution of the problems in the photographs, it is particularly useful. Here, it will be tested to see if the classification of diabetic retinopathy is normal or abnormal. Modifying the existing study's conclusion strategy, existing diabetic retinopathy techniques have sensitivity, specificity, and accuracy levels that are much lower than what is required for this research.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Algorithms , Diabetic Retinopathy/diagnostic imaging , Humans , Neural Networks, Computer , Retina
2.
Comput Intell Neurosci ; 2022: 7298903, 2022.
Article in English | MEDLINE | ID: mdl-36052039

ABSTRACT

Lung disease is one of the most harmful diseases in traditional days and is the same nowadays. Early detection is one of the most crucial ways to prevent a human from developing these types of diseases. Many researchers are involved in finding various techniques for predicting the accuracy of the diseases. On the basis of the machine learning algorithm, it was not possible to predict the better accuracy when compared to the deep learning technique; this work has proposed enhanced artificial neural network approaches for the accuracy of lung diseases. Here, the discrete Fourier transform and the Burg auto-regression techniques are used for extracting the computed tomography (CT) scan images, and feature reduction takes place by using principle component analysis (PCA). This proposed work has used the 120 subjective datasets from public landmarks with and without lung diseases. The given dataset is trained by using an enhanced artificial neural network (ANN). The preprocessing techniques are handled by using a Gaussian filter; thus, our proposed approach provides enhanced classification accuracy. Finally, our proposed method is compared with the existing machine learning approach based on its accuracy.


Subject(s)
Lung Diseases , Neural Networks, Computer , Algorithms , Humans , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging , Machine Learning
3.
Biomed Res Int ; 2022: 6451770, 2022.
Article in English | MEDLINE | ID: mdl-35958823

ABSTRACT

Most of the people all over the world pass away from complications related to lung cancer every single day. It is a deadly form of the disease. To improve a person's chances of survival, an early diagnosis is a necessary prerequisite. In this regard, the existing methods of tumour detection, such as CT scans, are most commonly used to recognize infected regions. Despite this, there are certain obstacles presented by CT imaging, so this paper proposes a novel model which is a correlation-based model designed for analysis of lung cancer. When registering pictures of thoracic and abdominal organs with slider motion, the total variation regularization term may correct the border discontinuous displacement field, but it cannot maintain the local characteristics of the image and loses the registration accuracy. The thin-plate spline energy operator and the total variation operator are spatially weighted via the spatial position weight of the pixel points to construct an adaptive thin-plate spline total variation regular term for lung image CT single-mode registration and CT/PET dual-mode registration. The regular term is then combined with the CRMI similarity measure and the L-BFGS optimization approach to create a nonrigid registration procedure. The proposed method assures the smoothness of interior of the picture while ensuring the discontinuous motion of the border and has greater registration accuracy, according to the experimental findings on the DIR-Lab 4D-CT public dataset and the CT/PET clinical dataset.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Algorithms , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Motion , Thorax
4.
Comput Intell Neurosci ; 2022: 6781740, 2022.
Article in English | MEDLINE | ID: mdl-35845897

ABSTRACT

The classification technology of hyperspectral images (HSI) consists of many contiguous spectral bands that are often utilized for a various Earth observation activities, such as surveillance, detection, and identification. The incorporation of both spectral and spatial characteristics is necessary for improved classification accuracy. In the classification of hyperspectral images, deep learning has gained significant traction. This research analyzes how to accurately classify new HSI from limited samples with labels. A novel deep-learning-based categorization based on feature extraction and classification is designed for this purpose. Initial extraction of spectral and spatial information is followed by spectral and spatial information integration to generate fused features. The classification challenge is completed using a compressed synergic deep convolution neural network with Aquila optimization (CSDCNN-AO) model constructed by utilising a novel optimization technique known as the Aquila Optimizer (AO). The HSI, the Kennedy Space Center (KSC), the Indian Pines (IP) dataset, the Houston U (HU) dataset, and the Salinas Scene (SS) dataset are used for experiment assessment. The sequence testing on these four HSI-classified datasets demonstrate that our innovative framework outperforms the conventional technique on common evaluation measures such as average accuracy (AA), overall accuracy (OA), and Kappa coefficient (k). In addition, it significantly reduces training time and computational cost, resulting in enhanced training stability, maximum performance, and remarkable training accuracy.


Subject(s)
Eagles , Animals , Neural Networks, Computer
5.
Sensors (Basel) ; 22(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591023

ABSTRACT

The transportation industry is crucial to the realization of a smart city. However, the current growth in vehicle numbers is not being matched by an increase in road capacity. Congestion may boost the number of accidents, harm economic growth, and result in higher gas emissions. Currently, traffic congestion is seen as a severe threat to urban life. Suffering as a result of increased car traffic, insufficient infrastructure, and inefficient traffic management has exceeded the tolerance limit. Since route decisions are typically made in a short amount of time, the visualization of the data must be presented in a highly conceivable way. Also, the data generated by the transportation system face difficulties in processing and sometimes lack effective usage in certain fields. Hence, to overcome the challenges in computer vision, a novel computer vision-based traffic management system is proposed by integrating a wireless sensor network (WSN) and visual analytics framework. This research aimed to analyze average message delivery, average latency, average access, average energy consumption, and network performance. Wireless sensors are used in the study to collect road metrics, quantify them, and then rank them for entry. For optimization of the traffic data, improved phase timing optimization (IPTO) was used. The whole experimentation was carried out in a virtual environment. It was observed from the experimental results that the proposed approach outperformed other existing approaches.


Subject(s)
Artificial Intelligence , Transportation , Accidents , Cities
6.
J Healthc Eng ; 2022: 1987917, 2022.
Article in English | MEDLINE | ID: mdl-35281536

ABSTRACT

Internet of Things (IoT) is a successful area for many industries and academia domains, particularly healthcare is one of the application areas that uses IoT sensors and devices for monitoring. IoT transition replaces contemporary health services with scientific and socioeconomic viewpoints. Since the epidemic began, diverse scientific organizations have been making accelerated efforts to use a wide range of tools to tackle this global challenge and the founders of IoT analytics. Artificial intelligence (AI) plays a key role in measuring, assessing, and diagnosing the risk. It could be used to predict the number of alternate incidents, recovered instances, and casualties, also used for forecasting cases. Within the COVID-19 background, IoT technologies are used to minimize COVID-19 exposure to others by prenatal screening, patient monitoring, and postpatient incident response in specified procedures. In this study, the importance of IoT technology and artificial intelligence in COVID-19 is explored, and the 3 important steps discussed such as the evaluation of networks, implementations, and IoT industries to battle COVID-19, including early detection, quarantine times, and postrecovery activities, are reviewed. In this study, how IoT handles the COVID-19 pandemic at a new level of healthcare is investigated. In this research, the long short-term memory (LSTM) with recurrent neural network (RNN) is used for diagnosis purpose and in particular, its important architecture for the analysis of cough and breathing acoustic characteristics. In comparison with both coughing and respiratory samples, our findings indicate poor accuracy of the voice test.


Subject(s)
COVID-19 , Internet of Things , Artificial Intelligence , Automation , COVID-19/diagnosis , Humans , Pandemics
7.
Environ Res ; 200: 111373, 2021 09.
Article in English | MEDLINE | ID: mdl-34033834

ABSTRACT

The recent spread of severe acute respiratory syndrome coronavirus (SAR-CoV-2) and the accompanied coronavirus disease 2019 (COVID-19) has continued ceaselessly despite the implementations of popular measures, which include social distancing and outdoor face masking as recommended by the World Health Organization. Due to the unstable nature of the virus, leading to the emergence of new variants that are claimed to be more and rapidly transmissible, there is a need for further consideration of the alternative potential pathways of the virus transmissions to provide the needed and effective control measures. This review aims to address this important issue by examining the transmission pathways of SARS-CoV-2 via indirect contacts such as fomites and aerosols, extending to water, food, and other environmental compartments. This is essentially required to shed more light regarding the speculation of the virus spread through these media as the available information regarding this is fragmented in the literature. The existing state of the information on the presence and persistence of SARS-CoV-2 in water-food-environmental compartments is essential for cause-and-effect relationships of human interactions and environmental samples to safeguard the possible transmission and associated risks through these media. Furthermore, the integration of effective remedial measures previously used to tackle the viral outbreaks and pandemics, and the development of new sustainable measures targeting at monitoring and curbing the spread of SARS-CoV-2 were emphasized. This study concluded that alternative transmission pathways via human interactions with environmental samples should not be ignored due to the evolving of more infectious and transmissible SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Water
8.
PLoS One ; 15(5): e0231465, 2020.
Article in English | MEDLINE | ID: mdl-32365123

ABSTRACT

Learning using the Internet or training through E-Learning is growing rapidly and is increasingly favored over the traditional methods of learning and teaching. This radical shift is directly linked to the revolution in digital computer technology. The revolution propelled by innovation in computer technology has widened the scope of E-Learning and teaching, whereby the process of exchanging information has been made simple, transparent, and effective. The E-Learning system depends on different success factors from diverse points of view such as system, support from the institution, instructor, and student. Thus, the effect of critical success factors (CSFs) on the E-Learning system must be critically analyzed to make it more effective and successful. This current paper employed the analytic hierarchy process (AHP) with group decision-making (GDM) and Fuzzy AHP (FAHP) to study the diversified factors from different dimensions of the web-based E-Learning system. The present paper quantified the CSFs along with its dimensions. Five different dimensions and 25 factors associated with the web-based E-Learning system were revealed through the literature review and were analyzed further. Furthermore, the influence of each factor was derived successfully. Knowing the impact of each E-Learning factor will help stakeholders to construct education policies, manage the E-Learning system, perform asset management, and keep pace with global changes in knowledge acquisition and management.


Subject(s)
Academic Success , Computer-Assisted Instruction , Curriculum/standards , Internet , Learning/physiology , Computer-Assisted Instruction/methods , Computer-Assisted Instruction/standards , Computer-Assisted Instruction/supply & distribution , Digital Divide/trends , Fuzzy Logic , Humans , Implementation Science , Internet/organization & administration , Internet/standards , Internet/supply & distribution , Internet Access/statistics & numerical data , Internet Access/trends , Knowledge , School Teachers/organization & administration , School Teachers/standards , Students/psychology , Students/statistics & numerical data , Teacher Training/methods , Teacher Training/organization & administration , Teacher Training/standards
SELECTION OF CITATIONS
SEARCH DETAIL