Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 18(1): 133-153, 2024.
Article in English | MEDLINE | ID: mdl-38428588

ABSTRACT

BACKGROUND & AIMS: The presence of myenteric plexitis in the proximal resection margins is a predictive factor of early postoperative recurrence in Crohn's disease. To decipher the mechanisms leading to their formation, T-cell interactions with enteric neural cells were studied in vitro and in vivo. METHODS: T cells close to myenteric neural cells were retrospectively quantified in ileocolonic resections from 9 control subjects with cancer and 20 patients with Crohn's disease. The mechanisms involved in T-cell adhesion were then investigated in co-cultures of T lymphocytes with enteric glial cells (glia). Finally, the implication of adhesion molecules in the development of plexitis and colitis was studied in vitro but also in vivo in Winnie mice. RESULTS: The mean number of T cells close to glia, but not neurons, was significantly higher in the myenteric ganglia of relapsing patients with Crohn's disease (2.42 ± 0.5) as compared with controls (0.36 ± 0.08, P = .0007). Co-culture experiments showed that exposure to proinflammatory cytokines enhanced T-cell adhesion to glia and increased intercellular adhesion molecule-1 (ICAM-1) expression in glia. We next demonstrated that T-cell adhesion to glia was inhibited by an anti-ICAM-1 antibody. Finally, using the Winnie mouse model of colitis, we showed that the blockage of ICAM-1/lymphocyte function-associated antigen-1 (LFA-1) with lifitegrast reduced colitis severity and decreased T-cell infiltration in the myenteric plexus. CONCLUSIONS: Our present work argues for a role of glia-T-cell interaction in the development of myenteric plexitis through the adhesion molecules ICAM-1/LFA-1 and suggests that deciphering the functional consequences of glia-T-cell interaction is important to understand the mechanisms implicated in the development and recurrence of Crohn's disease.


Subject(s)
Cell Adhesion , Coculture Techniques , Crohn Disease , Intercellular Adhesion Molecule-1 , Myenteric Plexus , Neuroglia , T-Lymphocytes , Humans , Crohn Disease/pathology , Crohn Disease/immunology , Crohn Disease/metabolism , Intercellular Adhesion Molecule-1/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Neuroglia/immunology , Animals , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Male , Female , Adult , Myenteric Plexus/pathology , Myenteric Plexus/metabolism , Myenteric Plexus/immunology , Mice , Middle Aged , Retrospective Studies , Aged
2.
Neurosci Lett ; 809: 137315, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37257681

ABSTRACT

Although our understanding of the pathophysiology of inflammatory bowel disease (IBD) is increasing, the expanding body of knowledge does not simplify the equation but rather reveals diverse, interconnected, and complex mechanisms in IBD. In addition to immune overactivation, defects in intestinal epithelial barrier (IEB) functioning, dysbiosis, and structural and functional abnormalities of the enteric nervous system are emerging as new elements contributing to the development of IBD. In addition to molecular changes in IBD, enteric glia from patients with Crohn's disease (CD) exhibits the inability to strengthen the IEB; these defects are not observed in patients with ulcerative colitis. In addition, there is a growing body of work describing that enteric glia interacts with not only enterocytes and enteric neurons but also other local cellular neighbours. Thus, because of their functions as connectors and regulators of immune cells, IEB, and microbiota, enteric glia could be the keystone of digestive homeostasis that is lacking in patients with CD.


Subject(s)
Crohn Disease , Inflammatory Bowel Diseases , Humans , Intestines , Neuroglia/physiology , Neurons
3.
Commun Biol ; 6(1): 236, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864093

ABSTRACT

Major advances have been achieved in imaging technologies but most methodological approaches currently used to study the enteric neuronal functions rely on exogenous contrast dyes that can interfere with cellular functions or survival. In the present paper, we investigated whether full-field optical coherence tomography (FFOCT), could be used to visualize and analyze the cells of the enteric nervous system. Experimental work on whole-mount preparations of unfixed mouse colons showed that FFOCT enables the visualization of the myenteric plexus network whereas dynamic FFOCT enables to visualize and identify in situ individual cells in the myenteric ganglia. Analyzes also showed that dynamic FFOCT signal could be modified by external stimuli such veratridine or changes in osmolarity. These data suggest that dynamic FFOCT could be of great interest to detect changes in the functions of enteric neurons and glia in normal and disease conditions.


Subject(s)
Enteric Nervous System , Tomography, Optical Coherence , Animals , Mice , Neuroglia , Neurons , Osmolar Concentration
4.
Front Neurosci ; 17: 1100473, 2023.
Article in English | MEDLINE | ID: mdl-36866332

ABSTRACT

Introduction: Repeated acute stress (RASt) is known to be associated with gastrointestinal dysfunctions. However, the mechanisms underlying these effects have not yet been fully understood. While glucocorticoids are clearly identified as stress hormones, their involvement in RASt-induced gut dysfunctions remains unclear, as does the function of glucocorticoid receptors (GR). The aim of our study was to evaluate the involvement of GR on RASt-induced changes in gut motility, particularly through the enteric nervous system (ENS). Methods: Using a murine water avoidance stress (WAS) model, we characterized the impact of RASt upon the ENS phenotype and colonic motility. We then evaluated the expression of glucocorticoid receptors in the ENS and their functional impact upon RASt-induced changes in ENS phenotype and motor response. Results: We showed that GR were expressed in myenteric neurons in the distal colon under basal conditions, and that RASt enhanced their nuclear translocation. RASt increased the proportion of ChAT-immunoreactive neurons, the tissue concentration of acetylcholine and enhanced cholinergic neuromuscular transmission as compared to controls. Finally, we showed that a GR-specific antagonist (CORT108297) prevented the increase of acetylcholine colonic tissue level and in vivo colonic motility. Discussion: Our study suggests that RASt-induced functional changes in motility are, at least partly, due to a GR-dependent enhanced cholinergic component in the ENS.

5.
J Neurochem ; 164(2): 193-209, 2023 01.
Article in English | MEDLINE | ID: mdl-36219522

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results. Herein, we propose to extend these findings by studying in more details LRRK2 expression in the ENS. LRRK2 expression was evaluated in full thickness segments of colon of 16 Lewy body, 12 non-Lewy body disorders cases, and 3 non-neurodegenerative controls and in various enteric neural cell lines. We showed that, in addition to enteric neurons, LRRK2 is constitutively expressed in enteric glial cells in both fetal and adult tissues. LRRK2 immunofluorescence intensity in the myenteric ganglia was not different between Lewy body and non-Lewy body disorders. Additionally, we identified the cAMP pathway as a key signaling pathway involved in the regulation of LRRK2 expression and phosphorylation in the enteric glial cells. Our study is the first detailed characterization of LRRK2 in the ENS and the first to show that enteric glial cells express LRRK2. Our findings provide a basis to unravel the functions of LRRK2 in the ENS and to further investigate the pathological changes in enteric synucleinopathies.


Subject(s)
Crohn Disease , Enteric Nervous System , Parkinson Disease , Adult , Humans , Animals , Crohn Disease/metabolism , Crohn Disease/pathology , Enteric Nervous System/metabolism , Parkinson Disease/metabolism , Neurons/metabolism , Cell Line , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism
6.
Metabolites ; 12(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35448477

ABSTRACT

Brain-gut axis refers to the bidirectional functional connection between the brain and the gut, which sustains vital functions for vertebrates. This connection also underlies the gastrointestinal (GI) comorbidities associated with brain disorders. Using a mouse model of glioma, based on the orthotopic injection of GL261 cell line in syngeneic C57BL6 mice, we show that late-stage glioma is associated with GI functional alteration and with a shift in the level of some bacterial metabolites in the cecum. By performing cecal content transfer experiments, we further show that cancer-associated alteration in cecal metabolites is involved in end-stage disease progression. Antibiotic treatment results in a slight but significant delay in mice death and a shift in the proportion of myeloid cells in the brain tumor environment. This work rationally considers microbiota modulating strategies in the clinical management of patients with late-stage glioma.

7.
J Neuroimmunol ; 349: 577422, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33068972

ABSTRACT

Plexitis in the proximal margin of intestinal resections are associated with post-operative recurrence of Crohn's disease. To understand their formation, in vitro analyzes were performed. T cells adhered preferentially to neuron and glial cells in mixed primary cultures of enteric nervous system and T cell activation increased their adhesion capacity. Higher number of T lymphocytes in close proximity to enteric glial cells was also observed in the myenteric ganglia of Crohn's patients as compared to control. These data show that close proximity between lymphocytes and enteric neural cells exists and may contribute to the formation of plexitis.


Subject(s)
Cell Adhesion/physiology , Crohn Disease/metabolism , Ganglia/metabolism , Myenteric Plexus/metabolism , Neurons/metabolism , T-Lymphocytes/metabolism , Animals , Cells, Cultured , Coculture Techniques , Crohn Disease/pathology , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Female , Ganglia/pathology , Humans , Myenteric Plexus/pathology , Neurons/pathology , Pregnancy , Rats , Rats, Sprague-Dawley , T-Lymphocytes/pathology
8.
J Clin Invest ; 129(5): 1910-1925, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30939120

ABSTRACT

It remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4ß7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy. While in mice IL-7 is known to play a role in systemic inflammation, we found that in humans IL-7 also controlled α4ß7 integrin expression and imprinted gut-homing specificity on T cells. IL-7R blockade reduced human T cell homing to the gut and colonic inflammation in vivo in humanized mouse models, and altered effector T cells in colon explants from UC patients grown ex vivo. Our findings show that failure of current treatments for CD and UC is strongly associated with an overexpressed IL-7R signaling pathway and point to IL-7R as a relevant therapeutic target and potential biomarker to fill an unmet need in clinical IBD detection and treatment.


Subject(s)
Colitis, Ulcerative/metabolism , Colon/metabolism , Crohn Disease/metabolism , Receptors, Interleukin-7/metabolism , T-Lymphocytes/cytology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adolescent , Adult , Aged , Animals , Colon/pathology , Cytokines/metabolism , Endoscopy , Female , Gene Expression Profiling , Gene Expression Regulation , Graft vs Host Disease/metabolism , Humans , Inflammation , Integrins/metabolism , Intestinal Mucosa/metabolism , Leukocytes, Mononuclear/cytology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Signal Transduction , Young Adult
9.
Neurogastroenterol Motil ; 31(1): e13467, 2019 01.
Article in English | MEDLINE | ID: mdl-30240048

ABSTRACT

BACKGROUND: Neuroimmune interactions are essential to maintain gut homeostasis and prevent intestinal disorders but so far, the impact of enteric glial cells (EGC) on immune cells remains a relatively unexplored area of research. As a dysregulation of critical cytokines such as interleukine-7 (IL-7) was suggested to exacerbate gut chronic inflammation, we investigated whether EGC could be a source of IL-7 in the gastrointestinal tract. METHODS: Expression of IL-7 in the rat enteric nervous system was analyzed by immunochemistry and Q-PCR. IL-7 variants were cloned and specific antibodies against rat IL-7 isoforms were raised to characterize their expression in the submucosal plexus. IL-7 isoforms were produced in vitro to analyze their impact on T-cell survival. KEY RESULTS: Neurons and glial cells of the rat enteric nervous system expressed IL-7 at both mRNA and protein levels. Novel rat IL-7 isoforms with distinct C-terminal parts were detected. Three of these isoforms were found in EGC or in both enteric neurons and EGC. Exposure of EGC to pro-inflammatory cytokines (IL-1ß and/or TNFα) induced an upregulation of all IL-7 isoforms. Interestingly, time-course and intensity of the upregulation varied according to the presence or absence of exon 5a in IL-7 variants. Functional analysis on T lymphocytes revealed that only canonical IL-7 protects T cells from cell death. CONCLUSIONS AND INFERENCES: IL-7 and its variants are expressed by neurons and glial cells in the enteric nervous system. Their distinct expression and upregulation in inflammatory conditions suggest a role in gut homeostasis which could be critical in case of chronic inflammatory diseases.


Subject(s)
Inflammation/immunology , Interleukin-7/immunology , Neuroglia/immunology , Neuroimmunomodulation/immunology , Submucous Plexus/immunology , Animals , Female , Interleukin-7/biosynthesis , Intestine, Small/immunology , Intestine, Small/innervation , Neurons/immunology , Protein Isoforms , Rats , Rats, Sprague-Dawley , T-Lymphocytes/immunology
10.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G1-G11, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29517926

ABSTRACT

Gone are the days when enteric glial cells (EGC) were considered merely satellites of enteric neurons. Like their brain counterpart astrocytes, EGC express an impressive number of receptors for neurotransmitters and intercellular messengers, thereby contributing to neuroprotection and to the regulation of neuronal activity. EGC also produce different soluble factors that regulate neighboring cells, among which are intestinal epithelial cells. A better understanding of EGC response to an inflammatory environment, often referred to as enteric glial reactivity, could help define the physiological role of EGC and the importance of this reactivity in maintaining gut functions. In chronic inflammatory disorders of the gut such as Crohn's disease (CD) and ulcerative colitis, EGC exhibit abnormal phenotypes, and their neighboring cells are dysfunctional; however, it remains unclear whether EGC are only passive bystanders or active players in the pathophysiology of both disorders. The aim of the present study is to review the physiological roles and properties of EGC, their response to inflammation, and their role in the regulation of the intestinal epithelial barrier and to discuss the emerging concept of CD as an enteric gliopathy.


Subject(s)
Crohn Disease , Enteric Nervous System/immunology , Intestines , Neuroglia/immunology , Crohn Disease/immunology , Crohn Disease/physiopathology , Enteric Nervous System/physiopathology , Humans , Inflammation , Intestines/immunology , Intestines/innervation
11.
Stem Cells ; 35(3): 800-811, 2017 03.
Article in English | MEDLINE | ID: mdl-27860054

ABSTRACT

Humans are chronically exposed to multiple environmental pollutants such as pesticides with no significant evidence about the safety of such poly-exposures. We exposed mesenchymal stem cells (MSC) to very low doses of mixture of seven pesticides frequently detected in food samples for 21 days in vitro. We observed a permanent phenotype modification with a specific induction of an oxidative stress-related senescence. Pesticide mixture also induced a shift in MSC differentiation towards adipogenesis but did not initiate a tumorigenic transformation. In modified MSC in which a premalignant phenotype was induced, the exposure to pesticide mixture promoted tumorigenic phenotype both in vitro and in vivo after cell implantation, in all nude mice. Our results suggest that a common combination of pesticides can induce a premature ageing of adult MSC, and as such could accelerate age-related diseases. Exposure to pesticide mixture may also promote the tumorigenic transformation in a predisposed stromal environment. Abstract Video Link: https://youtu.be/mfSVPTol-Gk Stem Cells 2017;35:800-811.


Subject(s)
Carcinogenesis/pathology , Mesenchymal Stem Cells/pathology , Pesticides/toxicity , Precancerous Conditions/pathology , Adipogenesis/drug effects , Animals , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Cell Differentiation/drug effects , Cell Respiration , Cellular Senescence , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice, Nude , Phenotype , Precancerous Conditions/metabolism , Reactive Oxygen Species/metabolism , Stress, Physiological , Tumor Suppressor Protein p53/metabolism
12.
J Neuroimmunol ; 295-296: 79-83, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27235353

ABSTRACT

Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease.


Subject(s)
Cell Proliferation/drug effects , Enteric Nervous System/pathology , Immunosuppressive Agents/pharmacology , Neuroglia/immunology , T-Lymphocytes/physiology , Antigens, CD/metabolism , Cell Proliferation/physiology , Cells, Cultured , Coculture Techniques , Crohn Disease/pathology , Culture Media, Conditioned/pharmacology , Glial Fibrillary Acidic Protein/immunology , Humans , Intestinal Neoplasms/pathology , Lymphocyte Activation/physiology , Neuroglia/chemistry , T-Lymphocytes/drug effects
13.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G941-51, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27056724

ABSTRACT

The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100ß during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development.


Subject(s)
Butyrates/pharmacology , Myenteric Plexus/cytology , Neurogenesis , Neuroglia/metabolism , Animals , Cell Line , Cells, Cultured , Colon/cytology , Colon/growth & development , Colon/innervation , Colon/metabolism , Fatty Acids/metabolism , Female , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Myenteric Plexus/growth & development , Myenteric Plexus/metabolism , Neuroglia/cytology , Neuroglia/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Phenotype , Rats , Rats, Sprague-Dawley , S100 Proteins/genetics , S100 Proteins/metabolism
14.
Glia ; 63(12): 2298-312, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26212105

ABSTRACT

Among the costimulatory factors widely studied in the immune system is the CD28/cytotoxic T-lymphocyte antigen-4 (CTLA4)-CD80/CD86 pathway, which critically controls the nature and duration of the T-cell response. In the brain, up-regulated expression of CD80/CD86 during inflammation has consistently been reported in microglia. However, the role of CD80/CD86 molecules has mainly been studied in a context of microglia-T cell interactions in pathological conditions, while the function of CD80/CD86 in the regulation of intrinsic brain cells remains largely unknown. In this study, we used a transgenic pig line in which neurons express releasable CTLA4-Ig, a synthetic molecule mimicking CTLA4 and binding to CD80/CD86. The effects of CTLA4-Ig on brain cells were analyzed after intracerebral transplantation of CTLA4-Ig-expressing neurons or wild-type neurons as control. This model provided in vivo evidence that CTLA4-Ig stimulated axonal outgrowth, in correlation with a shift of the nearby microglia from a compact to a ramified morphology. In a culture system, we found that the CTLA4-Ig-induced morphological change of microglia was mediated through CD86, but not CD80. This was accompanied by microglial up-regulated expression of the anti-inflammatory molecule Arginase 1 and the neurotrophic factor BDNF, in an astrocyte-dependent manner through the purinergic P2Y1 receptor pathway. Our study identifies for the first time CD86 as a key player in the modulation of microglia phenotype and suggests that CTLA4-Ig-derived compounds might represent new tools to manipulate CNS microglia.


Subject(s)
Abatacept/metabolism , Axons/physiology , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Microglia/physiology , Abatacept/genetics , Animals , Animals, Genetically Modified , Astrocytes/cytology , Astrocytes/physiology , Brain Tissue Transplantation , Brain-Derived Neurotrophic Factor/metabolism , Cell Enlargement , Cells, Cultured , Coculture Techniques , Corpus Striatum/cytology , Corpus Striatum/physiology , Corpus Striatum/surgery , Humans , Male , Microglia/cytology , RNA, Messenger/metabolism , Rats, Inbred Lew , Rats, Sprague-Dawley , Swine
15.
J Cell Mol Med ; 19(1): 124-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25310920

ABSTRACT

Foetal pig neuroblasts are interesting candidates as a cell source for transplantation, but xenotransplantation in the brain requires the development of adapted immunosuppressive treatments. As systemic administration of high doses of cyclosporine A has side effects and does not protect xenotransplants forever, we focused our work on local control of the host immune responses. We studied the advantage of cotransplanting syngenic mesenchymal stem cells (MSC) with porcine neuroblasts (pNb) in immunocompetent rat striata. Two groups of animals were transplanted, either with pNb alone or with both MSC and pNb. At day 63, no porcine neurons were detected in the striata that received only pNb, while four of six rats transplanted with both pNb and MSC exhibited healthy porcine neurons. Interestingly, 50% of the cotransplanted rats displayed healthy grafts with pNF70+ and TH+ neurons at 120 days post-transplantation. qPCR analyses revealed a general dwindling of pro- and anti-inflammatory cytokines in the striata that received the cotransplants. Motor recovery was also observed following the transplantation of pNb and MSC in a rat model of Parkinson's disease. Taken together, the present data indicate that the immunosuppressive properties of MSC are of great interest for the long-term survival of xenogeneic neurons in the brain.


Subject(s)
Brain/immunology , Immunity , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Transplantation, Heterologous , Animals , CD11b Antigen/metabolism , Cell Survival , Chemokines/genetics , Chemokines/metabolism , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Graft Survival/immunology , Immunity, Cellular , Immunocompetence , Male , Mesencephalon/cytology , Molecular Sequence Data , Motor Activity , Neurons/cytology , Neurons/metabolism , Neurons/transplantation , Oxidopamine , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Inbred Lew , Recovery of Function , Sus scrofa
16.
Cell Transplant ; 23(11): 1407-23, 2014.
Article in English | MEDLINE | ID: mdl-23879897

ABSTRACT

Induced pluripotent stem cells (iPSCs) offer certain advantages over embryonic stem cells in cell replacement therapy for a variety of neurological disorders. However, reliable procedures, whereby transplanted iPSCs can survive and differentiate into functional neurons, without forming tumors, have yet to be devised. Currently, retroviral or lentiviral reprogramming methods are often used to reprogram somatic cells. Although the use of these viruses has proven to be effective, formation of tumors often results following in vivo transplantation, possibly due to the integration of the reprogramming genes. The goal of the current study was to develop a new approach, using an adenovirus for reprogramming cells, characterize the iPSCs in vitro, and test their safety, survivability, and ability to differentiate into region-appropriate neurons following transplantation into the rat brain. To this end, iPSCs were derived from bone marrow-derived mesenchymal stem cells and tail-tip fibroblasts using a single cassette lentivirus or a combination of adenoviruses. The reprogramming efficiency and levels of pluripotency were compared using immunocytochemistry, flow cytometry, and real-time polymerase chain reaction. Our data indicate that adenovirus-generated iPSCs from tail-tip fibroblasts are as efficient as the method we used for lentiviral reprogramming. All generated iPSCs were also capable of differentiating into neuronal-like cells in vitro. To test the in vivo survivability and the ability to differentiate into region-specific neurons in the absence of tumor formation, 400,000 of the iPSCs derived from tail-tip fibroblasts that were transfected with the adenovirus pair were transplanted into the striatum of adult, immune-competent rats. We observed that these iPSCs produced region-specific neuronal phenotypes, in the absence of tumor formation, at 90 days posttransplantation. These results suggest that adenovirus-generated iPSCs may provide a safe and viable means for neuronal replacement therapies.


Subject(s)
Adenoviridae/physiology , Cellular Reprogramming/physiology , Corpus Striatum/surgery , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/virology , Stem Cell Transplantation/methods , Animals , Cell Differentiation/physiology , Cell Survival/physiology , Corpus Striatum/cytology , Male , Rats , Rats, Sprague-Dawley , Transfection
17.
Front Physiol ; 4: 357, 2013.
Article in English | MEDLINE | ID: mdl-24376422

ABSTRACT

UNLABELLED: Growing evidence show that human dental pulp stem cells (DPSCs) could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells. METHODOLOGY: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 h. Adherent (ADH) and non-adherent (non-ADH) cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Both ADH and non-ADH populations were analyzed by FACS and/or PCR. RESULTS: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133, and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers ß-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, ß-III tubulin, NF-M and PLP-1 transcripts. DPSCs that migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. CONCLUSION: Collectively, these data indicate that human DPSCs can be expanded and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte progenitors at different stages of commitment and, interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the ADH-DPSCs.

18.
Neurobiol Dis ; 50: 42-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23017648

ABSTRACT

Lewy pathology affects the gastrointestinal tract in Parkinson's disease (PD) and data from recent genetic studies suggest a link between PD and gut inflammation. We therefore undertook the present survey to investigate whether gastrointestinal inflammation occurs in PD patients. Nineteen PD patients and 14 age-matched healthy controls were included. For each PD patients, neurological and gastrointestinal symptoms were assessed using the Unified Parkinson's Disease Rating Scale part III and the Rome III questionnaire, respectively and cumulative lifetime dose of L-dopa was calculated. Four biopsies were taken from the ascending colon during the course of a total colonoscopy in controls and PD patients. The mRNA expression levels of pro-inflammatory cytokines (tumor necrosis factor alpha, interferon gamma, interleukin-6 and interleukin-1 beta) and glial marker (Glial fibrillary acidic protein, Sox-10 and S100-beta) were analyzed using real-time PCR in two-pooled biopsies. Immunohistochemical analysis was performed on the two remaining biopsies using antibodies against phosphorylated alpha-synuclein to detect Lewy pathology. The mRNA expression levels of pro-inflammatory cytokines as well as of two glial markers (Glial fibrillary acidic protein and Sox-10) were significantly elevated in the ascending colon of PD patients with respect to controls. The levels of tumor necrosis factor alpha, interferon gamma, interleukin-6, interleukin-1 beta and Sox-10 were negatively correlated with disease duration. By contrast, no correlations were found between the levels of pro-inflammatory cytokines or glial markers and disease severity, gastrointestinal symptoms or cumulative lifetime dose of L-dopa. There was no significant difference in the expression of pro-inflammatory cytokines or glial marker between patients with and without enteric Lewy pathology. Our findings provide evidence that enteric inflammation occurs in PD and further reinforce the role of peripheral inflammation in the initiation and/or the progression of the disease.


Subject(s)
Colitis/etiology , Inflammation/etiology , Lewy Bodies/pathology , Parkinson Disease/complications , Adult , Aged , Colitis/immunology , Colitis/pathology , Cytokines/biosynthesis , Female , Humans , Inflammation/immunology , Inflammation/pathology , Male , Middle Aged , Parkinson Disease/immunology , Parkinson Disease/pathology , RNA, Messenger/analysis , Real-Time Polymerase Chain Reaction
19.
Stem Cells ; 30(10): 2342-53, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22888011

ABSTRACT

Besides their therapeutic benefit as cell source, neural stem/progenitor cells (NSPCs) exhibit immunosuppressive properties of great interest for modulating immune response in the central nervous system. To decipher the mechanisms of NSPC-mediated immunosuppression, activated T cells were exposed to NSPCs isolated from fetal rat brains. Analyses revealed that NSPCs inhibited T-cell proliferation and interferon-gamma production in a dose-dependent manner. A higher proportion of helper T cells (CD4+ T cells) was found in the presence of NSPCs, but analyses of FoxP3 population indicated that T-cell suppression was not secondary to an induction of suppressive regulatory T cells (FoxP3+ CD4+ CD25+). Conversely, induction of the high affinity interleukin-2 (IL-2) receptor (CD25) and the inability of IL-2 to rescue T-cell proliferation suggest that NSPCs display immunosuppressive activity without affecting T-cell activation. Cultures in Transwell chambers or addition of NSPC-conditioned medium to activated T cells indicated that part of the suppressive activity was not contact dependent. We therefore searched for soluble factors that mediate NSPC immunosuppression. We found that NSPCs express several immunosuppressive molecules, but the ability of these cells to inhibit T-cell proliferation was only counteracted by heme oxygenase (HO) inhibitors in association or not with nitric oxide synthase inhibitors. Taken together, our findings highlight a dynamic crosstalk between NSPCs and T lymphocytes and provide the first evidence of an implication of HO-1 in mediating the immunosuppressive effects of the NSPCs.


Subject(s)
Brain/metabolism , Heme Oxygenase-1/metabolism , Immunity, Innate , Neural Stem Cells/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Brain/cytology , Brain/immunology , Cell Communication/immunology , Cell Proliferation , Coculture Techniques , Embryo, Mammalian , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression/immunology , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Interferon-gamma/immunology , Lymphocyte Activation/drug effects , Neural Stem Cells/cytology , Neural Stem Cells/immunology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
20.
J Biol Chem ; 287(40): 33664-74, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22782899

ABSTRACT

Cancer stem cells (CSCs) are thought to be partially responsible for cancer resistance to current therapies and tumor recurrence. Dichloroacetate (DCA), a compound capable of shifting metabolism from glycolysis to glucose oxidation, via an inhibition of pyruvate dehydrogenase kinase was used. We show that DCA is able to shift the pyruvate metabolism in rat glioma CSCs but has no effect in rat neural stem cells. DCA forces CSCs into oxidative phosphorylation but does not trigger the production of reactive oxygen species and consecutive anti-cancer apoptosis. However, DCA, associated with etoposide or irradiation, induced a Bax-dependent apoptosis in CSCs in vitro and decreased their proliferation in vivo. The former phenomenon is related to DCA-induced Foxo3 and p53 expression, resulting in the overexpression of BH3-only proteins (Bad, Noxa, and Puma), which in turn facilitates Bax-dependent apoptosis. Our results demonstrate that a small drug available for clinical studies potentiates the induction of apoptosis in glioma CSCs.


Subject(s)
Glioblastoma/pathology , Glioma/pathology , Glucose/metabolism , Neoplastic Stem Cells/cytology , Neural Stem Cells/cytology , Proto-Oncogene Proteins c-bcl-2/metabolism , Spheroids, Cellular/pathology , Adenosine Triphosphate/chemistry , Animals , Apoptosis , Dichloroacetic Acid/pharmacology , Drug Design , Gene Expression Regulation, Neoplastic , Glycolysis , Phosphorylation , Proteomics/methods , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...