Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(1990): 20221994, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36629116

ABSTRACT

Mesopelagic fishes are an important element of marine food webs, a huge, still mostly untapped food resource and great contributors to the biological carbon pump, whose future under climate change scenarios is unknown. The shrinking of commercial fishes within decades has been an alarming observation, but its causes remain contended. Here, we investigate the effect of warming climate on mesopelagic fish size in the eastern Mediterranean Sea during a glacial-interglacial-glacial transition of the Middle Pleistocene (marine isotope stages 20-18; 814-712 kyr B.P.), which included a 4°C increase in global seawater temperature. Our results based on fossil otoliths show that the median size of lanternfishes, one of the most abundant groups of mesopelagic fishes in fossil and modern assemblages, declined by approximately 35% with climate warming at the community level. However, individual mesopelagic species showed different and often opposing trends in size across the studied time interval, suggesting that climate warming in the interglacial resulted in an ecological shift toward increased relative abundance of smaller sized mesopelagic fishes due to geographical and/or bathymetric distribution range shifts, and the size-dependent effects of warming.


Subject(s)
Climate Change , Fossils , Animals , Temperature , Fishes , Mediterranean Sea , Ecosystem
2.
Environ Biol Fishes ; 105(10): 1269-1286, 2022.
Article in English | MEDLINE | ID: mdl-36313612

ABSTRACT

Evaluation of the impact of climatic changes on the composition of fish assemblages requires quantitative measures that can be compared across space and time. In this respect, the mean temperature of the catch (MTC) approach has been proven to be a very useful tool for monitoring the effect of climate change on fisheries catch. Lack of baseline data and deep-time analogues, however, prevent a more comprehensive evaluation. In this study, we explore the applicability of the mean temperature approach to fossil fish faunas by using otolith assemblage data from the eastern Mediterranean and the northern Adriatic coastal environments corresponding to the last 8000 years (Holocene) and the interval 2.58-1.80 Ma B. P. (Early Pleistocene). The calculated mean temperatures of the otolith assemblage (MTO) range from 13.5 to 17.3 °C. This case study shows that the MTO can successfully capture compositional shifts in marine fish faunas based on variations in their climatic affinity driven by regional climate differences. However, the index is sensitive to methodological choices and thus requires standardized sampling. Even though theoretical and methodological issues prevent direct comparisons between MTO and MTC values, the MTO offers a useful quantitative proxy for reconstructing spatial and temporal trends in the biogeographic affinity of fossil otolith assemblages.

3.
Glob Chang Biol ; 28(13): 4041-4053, 2022 07.
Article in English | MEDLINE | ID: mdl-35411661

ABSTRACT

Preserving adaptive capacities of coastal ecosystems, which are currently facing the ongoing climate warming and a multitude of other anthropogenic impacts, requires an understanding of long-term biotic dynamics in the context of major environmental shifts prior to human disturbances. We quantified responses of nearshore mollusk assemblages to long-term climate and sea-level changes using 223 samples (~71,300 specimens) retrieved from latest Quaternary sediment cores of the Adriatic coastal systems. These cores provide a rare chance to study coastal systems that existed during glacial lowstands. The fossil mollusk record indicates that nearshore assemblages of the penultimate interglacial (Late Pleistocene) shifted in their faunal composition during the subsequent ice age, and then reassembled again with the return of interglacial climate in the Holocene. These shifts point to a climate-driven habitat filtering modulated by dispersal processes. The resilient, rather than persistent or stochastic, response of the mollusk assemblages to long-term environmental changes over at least 125 thousand years highlights the historically unprecedented nature of the ongoing anthropogenic stressors (e.g., pollution, eutrophication, bottom trawling, and invasive species) that are currently shifting coastal regions into novel system states far outside the range of natural variability archived in the fossil record.


Subject(s)
Climate Change , Ecosystem , Eutrophication , Fossils , Humans
4.
Proc Biol Sci ; 287(1929): 20200695, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32546093

ABSTRACT

Palaeoecological data are unique historical archives that extend back far beyond the last several decades of ecological observations. However, the fossil record of continental shelves has been perceived as too coarse (with centennial-millennial resolution) and incomplete to detect processes occurring at yearly or decadal scales relevant to ecology and conservation. Here, we show that the youngest (Anthropocene) fossil record on the northern Adriatic continental shelf provides decadal-scale resolution that accurately documents an abrupt ecological change affecting benthic communities during the twentieth century. The magnitude and the duration of the twentieth century shift in body size of the bivalve Corbula gibba is unprecedented given that regional populations of this species were dominated by small-size classes throughout the Holocene. The shift coincided with compositional changes in benthic assemblages, driven by an increase from approximately 25% to approximately 70% in median per-assemblage abundance of C. gibba. This regime shift increase occurred preferentially at sites that experienced at least one hypoxic event per decade in the twentieth century. Larger size and higher abundance of C. gibba probably reflect ecological release as it coincides with an increase in the frequency of seasonal hypoxia that triggered mass mortality of competitors and predators. Higher frequency of hypoxic events is coupled with a decline in the depth of intense sediment mixing by burrowing benthic organisms from several decimetres to less than 20 cm, significantly improving the stratigraphic resolution of the Anthropocene fossil record and making it possible to detect sub-centennial ecological changes on continental shelves.


Subject(s)
Bivalvia/physiology , Animals , Ecosystem , Fossils
5.
Proc Biol Sci ; 285(1886)2018 09 12.
Article in English | MEDLINE | ID: mdl-30209225

ABSTRACT

Stratigraphic patterns of last occurrences (LOs) of fossil taxa potentially fingerprint mass extinctions and delineate rates and geometries of those events. Although empirical studies of mass extinctions recognize that random sampling causes LOs to occur earlier than the time of extinction (Signor-Lipps effect), sequence stratigraphic controls on the position of LOs are rarely considered. By tracing stratigraphic ranges of extant mollusc species preserved in the Holocene succession of the Po coastal plain (Italy), we demonstrated that, if mass extinction took place today, complex but entirely false extinction patterns would be recorded regionally due to shifts in local community composition and non-random variation in the abundance of skeletal remains, both controlled by relative sea-level changes. Consequently, rather than following an apparent gradual pattern expected from the Signor-Lipps effect, LOs concentrated within intervals of stratigraphic condensation and strong facies shifts mimicking sudden extinction pulses. Methods assuming uniform recovery potential of fossils falsely supported stepwise extinction patterns among studied species and systematically underestimated their stratigraphic ranges. Such effects of stratigraphic architecture, co-produced by ecological, sedimentary and taphonomic processes, can easily confound interpretations of the timing, duration and selectivity of mass extinction events. Our results highlight the necessity of accounting for palaeoenvironmental and sequence stratigraphic context when inferring extinction dynamics from the fossil record.


Subject(s)
Biodiversity , Extinction, Biological , Fossils , Mollusca , Paleontology/methods , Animals , Biological Evolution , Ecology , Italy
6.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28768884

ABSTRACT

Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems.


Subject(s)
Bivalvia , Body Size , Climate Change , Introduced Species , Animals , Ecosystem , Indian Ocean , Mediterranean Sea
SELECTION OF CITATIONS
SEARCH DETAIL
...